期刊文献+

自然场景中基于局部轮廓特征的类圆对象识别方法 被引量:4

Similar circular object recognition method based on local contour feature in natural scenario
下载PDF
导出
摘要 在自然场景下,受背景纹理、遮挡、光线影响,不容易提取到对象完整的轮廓,为此,提出了一种基于局部轮廓特征的识别方法,该局部轮廓特征是由直线和曲线组成的2相邻轮廓片段特征(2AS)。首先,分析相邻片段之间的夹角、片段的长度和弯曲强度,定义2AS的语义模型;接着,依据2AS之间的相对位置关系定义2AS相互关系模型,分别描述对象的2AS特征和2AS之间的相互关系;然后,使用对象模板的2AS的语义模型与测试图像中的2AS特征进行初步匹配,接着依据对象模板的2AS相互关系模型进行精确匹配;最后,根据对象模板的2AS相互关系模型检测到的成组2AS进行重复性聚类,并根据对象模板的2AS相互关系模型对聚类的对象判决。与使用近似直线片段组成的2AS特征算法的对比实验结果证明,该算法对输电线路中均压环部件的识别具有较高的正确率、较低的误检率和漏检率,从而更为有效地识别均压环部件。 In the natural scenario,it is difficult to extract a complete outline of the object because of background textures,light and occlusion. Therefore an object recognition method based on local contour feature was proposed. Local contour feature of this paper formed by chains of 2-adjacent straight and curve contour segments( 2AS). First,the angle of the adjacent segments,the segment length and the bending strength were analyzed,and the semantic model of the 2AS contour feature was defined. Then on the basis of the relative position relation between object's 2AS features,the 2AS mutual relation model was defined. Second,the 2AS semantic model of the object template primarily matched with the 2AS features of the test image,then 2AS mutual relation model of object template accurately matched with the 2AS features of the test image. At last,the pairs of 2AS of detected local contour features were obtained and repeatedly grouped,then grouped objects were verified according to the 2AS mutual relation model of object template. The contrast experiment with the 2AS feature algorithm with similar straight-line chains,the proposed algorithm has higher accuracy,low false positive rate and miss rate in the recognition of grading ring,then the method can more effectively recognize the grading ring.
出处 《计算机应用》 CSCD 北大核心 2016年第5期1399-1403,共5页 journal of Computer Applications
基金 2014年国家电网发展项目(169)~~
关键词 对象识别 局部轮廓特征 相邻片断 相互关系模型 object recognition local contour feature adjacent segment mutual relation model
  • 相关文献

参考文献15

  • 1GHOSH A, PETKOV N. Robustness of shape descriptors to incomplete contour representations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(11):1793-1804. 被引量:1
  • 2BIEDERMAN I, JU G. Surface versus edge-based determinants of visual recognition[J]. Cognitive Psychology, 1988, 20(1):38-64. 被引量:1
  • 3RAVISHANKAR S, JAIN A, MITTAL A. Multi-stage contour based detection of deformable objects[C]//Proceedings of the 10th European Conference on Computer Vision. Heidelberg:Springer, 2008:483-496. 被引量:1
  • 4SHOTTON J, BLAKE A, CIPOLLA R. Multiscale categorical object recognition using contour fragments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(7):1270-1281. 被引量:1
  • 5FERRARI V, TUYTELAARSTINNE T, van GOOL L. Object detection by contour segment networks[C]//Proceedings of the 9th European Conference on Computer Vision. Heidelberg:Springer, 2006:14-28. 被引量:1
  • 6HUET B, HANCOCK E R. Shape recognition from large image libraries by inexact graph matching[J]. Pattern Recognition Letters, 1999, 20(11):1259-1269. 被引量:1
  • 7CHANG W, LEE S Y. Description of shape patterns using circular arcs for object detection[J]. IET Computer Vision, 2013, 7(2):90-104. 被引量:1
  • 8XU C, KUIPERS B. Object detection using principal contour fragments[C]//Proceedings of the 2011 Canadian Conference on Computer and Robot Vision. Piscataway, NJ:IEEE, 2011:363-370. 被引量:1
  • 9LU C E, LATECKI L J, ADLURU N, et al. Shape guided contour grouping with particle filters[C]//Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Piscataway, NJ:IEEE, 2009:2288-2295. 被引量:1
  • 10FERRARI V, FEVRIER L, JURIE F, et al. Groups of adjacent contour segments for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(1):36-51. 被引量:1

二级参考文献27

共引文献41

同被引文献35

引证文献4

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部