期刊文献+

新疆能源消费碳排放过程及其影响因素——基于扩展的Kaya恒等式 被引量:54

The process of energy-related carbon emissions and influencing mechanism research in Xinjiang
下载PDF
导出
摘要 新疆,中国西部的欠发达区域,如何在保持社会经济持续快速发展的同时实现碳排放的减速增长是现阶段的重要发展命题,对于实现国家的减排目标有着至关重要的作用。通过对经典的Kaya恒等式进行扩展,并采用基于LMDI的完全分解模型,解析了1952年—2010年新疆的一次能源消费的碳排放的主要驱动因素。依据1952年以来新疆社会经济发展状况和碳排放总量演变特征,并结合一定的历史背景等,将新疆的一次能源消费的碳排放划分为6个演变阶段,定量分析了人口规模效应、经济产出效应、能源强度效应、能源结构效应和能源替代效应在不同发展阶段的贡献作用,主要的研究结论如下:(1)经济产出效应和人口规模效应是新疆碳排放增长的最主要贡献因子。(2)能源强度效应在1978年之前对碳排放的增长表现为正效应,主要原因是极低的能源利用效率和落后的生产工艺。改革开放之后,能源强度效应成为遏制碳排放增长的重要贡献因子。(3)能源结构效应和能源替代效应也是遏制新疆碳排放增长的主要贡献因子,但是其贡献作用还比较小,主要是因为可再生能源在能源消费总量中的比重还比较低和以煤为主的能源消费结构还没有发生根本性的改变。 Reduction of greenhouse gases (GHG) has become a primary concern for policy makers and government managers globally. China has become the world's largest primary energy consumer and carbon emitter after decades of rapid economic growth. Research on regional carbon emissions is crucial for China to achieve its reduction targets. Presently, the biggest challenge faced by the local government is to reduce carbon emissions, and ensure that it does not hinder social- economic development. This case study in Xinjiang, a less developed area in western China, aimed to determine the most important carbon emission contributors and analyze energy-related carbon emissions. Our estimates were based on the provincial and national energy statistics. Data resources available for the present study included statistics on populations, gross domestic product (GDP), and total energy consumption from 1952 to 2010. Carbon emissions due to energy consumption were calculated according to the method of the IPCC Guidelines for National Greenhouse Gas Inventories. It was observed that the total energy consumption in Xinjiang increased from 0.393 Mtce in 1952 to 82.902 Mtce in 2010, representing a 210.95-fold increase over the period of 59 years. Energy-related carbon emissions in the area increased from 0.285 Mt in 1952 to 53.662 Mt in 2010, representing a 188.23-fold increase over the study period. We analyzed the changes in the total carbon emissions and carbon emissions structure from 1952 to 2010. Coal consumption was found to be the biggest contributor to total carbon emission in Xinjiang. The share of carbon emissions from coal consumption decreased until 2004, but increased afterward. The share of carbon emissions from natural gas increased steadily from 0.12% in 1954 to 8.66% in 2010. The Logarithmic Mean Divisia Index (LMDI) technique based on an extended Kaya identity was used to determine the five main energy-related carbon emissions in Xinjiang. We first used the LMDI method to decompose carbon dioxide emissions on
出处 《生态学报》 CAS CSCD 北大核心 2016年第8期2151-2163,共13页 Acta Ecologica Sinica
基金 广东省科学院青年科学研究基金(qnjj201501) 广州地理研究所优秀青年创新人才基金(030)
关键词 能源消费 碳排放 影响因素 新疆 energy consumption carbon emissions influencing mechanisms Xinjiang
  • 相关文献

参考文献44

  • 1Kennedy C, Steinberger J, Gasson B, Hansen Y, Hillman T, Havrdnek M, Pataki D, Phdungsilp A, Ramaswami A, Mendez G V. Greenhousegas emissions from global cities. Environmental Science & Technology, 2009,43( 19) : 7297-7302. 被引量:1
  • 2Guan D B, Liu Z, Geng Y, Lindner S, Hubacek K. The gigatonne gap in China's carbon dioxide inventories. Nature Climate Change, 2012, 2(9): 672-675. 被引量:1
  • 3Mahony T 0. Decomposition of Ireland^ carbon emissions from 1990 to 2010: an extended Kaya identity. Energy Policy, 2013,59: 573-581. 被引量:1
  • 4Geng Y, Zhao H Y, Liu Z, Xue B, Fujita T, Xi F M. Exploring driving factors of energy-related C02 emissions in Chinese provinces: A case ofLiaoning. Energy Policy, 2013 , 60: 820- 826. 被引量:1
  • 5Sheinbaum-Pardo C,Mora-P6rez S,Robles-Moraies G. Decomposition of energy consumption and C02 emissions in Mexican manufacturingindustries: Trends between 1990 and 2008. Energy for Sustainable Development, 2012, 16( 1) : 57-67. 被引量:1
  • 6Jotzo F, Burke P J, Wood P J, Macintosh A, Stern D I. Decomposing the 2010 global carbon dioxide emissions rebound. Nature Climate Change,2012,2(4) : 213-214. 被引量:1
  • 7Meng M,Niu D X,Shang W. A small-sample hybrid model for forecasting energy-related C02 emissions. Energy, 2014,64: 673-677. 被引量:1
  • 8Zhou N, Fridley D, Khanna N Z, Ke J, McNeil M, Levine M. China's energy and emissions outlook to 2050: Perspectives from bottom-up energyend-use model. Energy Policy, 2013 , 53: 51-62. 被引量:1
  • 9Wang Y F,Liang S. Carbon dioxide mitigation target of China in 2020 and key economic sectors. Energy Policy, 2013,58: 90-96. 被引量:1
  • 10Wang K, Zhang X, Wei Y M,Yu S W. Regional allocation of C02 emissions allowance over provinces in China by 2020. Energy Policy, 2013,54: 214-229. 被引量:1

二级参考文献94

共引文献51

同被引文献735

引证文献54

二级引证文献450

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部