期刊文献+

回归再时效对超高强铝合金力学性能及组织的影响 被引量:4

Effect of RRA treatment on the mechanical properties and microstructure of ultrahigh strength aluminum alloys
下载PDF
导出
摘要 在传统的回归再时效(retrogression and re-aging,RRA)工艺(峰时效)基础上降低预时效或再时效温度,对Fe和Si杂质含量高的超高强Al-Zn-Mg-Cu合金挤压棒材进行RRA处理,通过拉伸性能和疲劳性能测试以及扫描电镜和透射电镜观察,研究RRA工艺对合金力学性能与组织的影响。结果表明:降低预时效或再时效温度都可明显提高该合金的塑性和抗疲劳损伤性能,略微降低合金的抗拉强度。采用峰时效温度(120℃)RRA处理后的合金,晶内的主要析出相为尺寸较大的η′相,不能被位错切割,合金强度较高(674 MPa),但塑性和抗疲劳损伤性能差,伸长率为11.1%,最终应力强度因子幅值ΔK=26.8 MPa·m1/2;降低时效温度可增加析出相中GP区粒子的比例,减小η′相的尺寸,从而提高塑性变形能力以及抗疲劳损伤性能。 Based on the traditional retrogression and re-aging(RRA) technology, RRA treatment by decreasing pre-aging and re-aging temperature was performed on ultrahigh strength aluminum alloy extruded bar with high content of Fe and Si elements. The effect of RRA treatment on the mechanical properties and microstructure of ultrahigh strength aluminum alloys were investigated by tensile and fatigue tests, scanning electron microscopy(SEM) and transmission electron microscopy(TEM). The results show that with decreasing of the pre-aging and re-aging temperatures, the ductility and the fatigue damage resistance increase obviously, and the strength decreases slightly. The large sized η′ phase is the dominant precipitate within the grains after the alloys were treated under RRA with T6 temperature(120 ℃). The large η′ phase cannot be cut by the dislocations, so the strength of alloys is relatively higher(674 MPa), however, the ductility(11.1%) and fatigue damage resistance decrease(ΔK=26.8 MPa·m1/2). With decreasing of the aging temperature, the particle proportion of GP zones increases and the size of η′ phase decreases. Then, the ductility and the fatigue damage resistance are improved.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2016年第2期264-269,共6页 Materials Science and Engineering of Powder Metallurgy
基金 国家自然科学基金资助项目(51171209)
关键词 回归再时效 可切割粒子 超高强铝合金 挤压棒材 拉伸性能 抗疲劳损伤性能 retrogression and re-aging(RRA) shearable particles ultrahigh strength aluminum alloys exlruding bar tensile property fatigue damage resistance
  • 相关文献

参考文献14

  • 1JR STARKE E A, STALEY J T. Application of aluminum alloys to aircraft[J]. P~og Aerospace Sci, 1996, 32(2)- 131-172. 被引量:1
  • 2HEINZ A, HASZLER A, KEIDEL C. Recent development in aluminum alloys for aerospace applications[J]. Mater Sci Eng A, 2000. 280(1): 102-107. 被引量:1
  • 3李慧中,卫晓燕,梁霄鹏,姜俊,欧阳杰,李轶.挤压态AZ80镁合金的塑性变形行为[J].粉末冶金材料科学与工程,2014,19(1):31-38. 被引量:5
  • 4SOMOZA A, DUPASQUIER A. Positron studies of solute aggregation in aged-hardenable aluminum alloys[J]. J Mater Process Technol, 2003, 135(1): 83-90. 被引量:1
  • 5OLIVIER A F Jr, DE BARROS M C. The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminum alloys[J]. Mater Sci Eng A, 2004, 379(1/2): 321-326. 被引量:1
  • 6C1NA B. Reducing the susceptibility of alloys particularly aluminum alloys to stress corrosion cracking: US, 3856584[P].1974-12-24. 被引量:1
  • 7IBRAHIM M F, SAMULE A M, SAMUEL F H. A preliminary study on optimizing the heat treatment of high strength A1-Cu-Mg-Zn alloys[J]. Materials and Design, 2014, 57(1): 342-350. 被引量:1
  • 8PENG Guosheng, CHEN Kanghua, CHEN Songyi, et al. Influence of repetitious-RRA treatment on the strength and SCC resistance of A1-Zn-Mg-Cu alloy[J]. Mater Sci Eng A, 2011; 528(12): 4014-4018. 被引量:1
  • 9WANG Yilin, PAN Qinglin, WEI Lili, et al. Effect of retrogression and reaging treatment on the microstructure and fatigue crack growth behavior of 7050 aluminum alloy thick plate[J]. Mater Des, 2014, 55(4): 857-863. 被引量:1
  • 10CHEN Xu, LIU Zhiyi, LIN Mao, et al. Enhanced fatigue crack propagation resistance in an A1-Zn-Mg-Cu alloy by retrogression and reaging treatment[J]. J Mater Eng Perform, 2012, 21(11): 2345-2353. 被引量:1

二级参考文献27

  • 1陈维平,詹美燕,陈宛德,张大童,李元元.变形镁合金的塑性加工技术研究及展望[J].特种铸造及有色合金,2007,27(1):40-43. 被引量:44
  • 2王少林,阮雪榆,俞新陆,陈森灿,胡宗式.运用热模拟压缩试验确定精确的金属流动方程[J].中国机械工程,1996,7(6):101-102. 被引量:2
  • 3PoirierJP 关德林.晶体的高温塑性变形[M].大连:大连理工大学出版社,1989.. 被引量:47
  • 4XU Shu-bo, QIN Zhen, LIU Ting, et al. Effect of severe plastic deformation on microstructure and mechanical properties of bulk AZ31 magnesium alloy [J]. Transactions of Nonferrous Metals Society of China, 2012, (22): 61-67. 被引量:1
  • 5SHI H, MCLAREN A J, SELLARS C M. Constitutive equations for high temperature flow stress of aluminum alloys [J]. Materials Science and Technology, 1997, 13 (3): 210-214. 被引量:1
  • 6SELLARS C M, MCTEGART W J. On the mechanism of hot deformation [J]. Acta Metallurgica, 1966, 14(3): 1136-1138. 被引量:1
  • 7GALIYEV A, KAIBYSHEV R, GOTTSTEIN G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 [J]. Acta Materialia, 2001, 49(7): 1199-1207. 被引量:1
  • 8POLIAK E I, JONAS J J. A one parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Materialia, 1996, 44(1): 127-136. 被引量:1
  • 9余琨,史褆,王日初,黎文献,王晓艳,蔡志勇.AZ31镁合金变形行为的热/力模拟[J].中南大学学报(自然科学版),2008,39(2):216-220. 被引量:17
  • 10王智祥,刘雪峰,谢建新.AZ91镁合金高温变形本构关系[J].金属学报,2008,44(11):1378-1383. 被引量:55

共引文献4

同被引文献32

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部