期刊文献+

带有logistic源的生物趋化模型解的全局有界性

Global Boundedness of a Two-species Chemotaxis System
下载PDF
导出
摘要 研究了一个关于两个物种趋化模型的初边值问题{u_t=△u-▽·(uχ_1(w)△w)+μ_1u(1-u),x∈Ω,t>0,vt=△v-▽·(vχ_2(w)△w)+μ_2v(1-v),x∈Ω,t>0,wt=△w+u-w-vw x∈Ω,t>0{,其中ΩR^n(n≥1)是边界光滑的有界区域,χ_i(w)(i=1,2)为趋化敏感函数且满足χ_i(w)≤χ_i/(1+α_iw)^(δ_i),初值u_0,v_0∈C^0(Ω)和w_0∈W^(1,∞)(Ω)且χ_i,α_i,μ_1和μ_2为正,δ_i>1。则当参数槇χ_i和μ_1+μ_2满足一定条件时,表明此模型的初边值问题有唯一的经典解且一致有界。 This paper deals with the global boundedness of the two-species chemotaxis system{ut= △u- ▽·( uχ1( w) △w) + μ1u( 1- u), x∈Ω,t 0,vt= △v- ▽·( vχ2( w) △w) + μ2v( 1- v), x∈Ω,t 0,wt= △w + u- w- vw x∈Ω,t 0,under homogeneous Neumann boundary condition in a smoothly bounded domain ΩR^n( n≥1),with nonnegative intial data u0,v0∈C^0(Ω^-) and w0∈W^1,∞( Ω).χi,αi,μ1has a chemotactic sensitivity function and satisfies χi( w) ≤χi/( 1 + αiw)^(δi),where the parameters χi,αi,μ1 and μ2 are positive δ_i 1. Under the condition that χ1,χ2and μ1+ μ2 satisfy some specified conditions,the corresponding initial-boundary value problem possesses a unique global classical solu_tion and is uniformly bounded.
作者 李丹 穆春来
出处 《西华师范大学学报(自然科学版)》 2016年第1期17-24,1,共8页 Journal of China West Normal University(Natural Sciences)
基金 国家自然科学基金项目(11371384) 重庆市自然科学基金项目(cstc2015jcyjBX0007)
关键词 趋化性 全局有界 logistic源 chemotaxis global boundedness logistic source
  • 相关文献

参考文献15

  • 1KELLER E F, SEGEL L A. Initiation of slime mold aggregation viewed as an instability[J]. J. Theoret. Biol. 1970,26(3) : 399-4151. 被引量:1
  • 2OSAKI K, YAGI A. Finite dimensional attractors for one-dimensional Keller-Segel equations [ J ]. Funkcial. Ekvac. 2001,44 (3) :441-469. 被引量:1
  • 3NAGAI T, SENBA T, YOSHIDA K. Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis [ J 2- Funkeial. Ekvae. 1997,40 (3) :411-433. 被引量:1
  • 4TAO Y, WINKLER M. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with suberitical sensitivity[ J]. J. Differential Equations, 2012,252:692-715. 被引量:1
  • 5CAO X. Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces [J~. Discrete Contin. Dynam. Syst. Set. A ,2015,35:1891-1904. 被引量:1
  • 6WINKLER M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model[ J]. J. Differential Equa- tions, 2010,248(12) :2889-2905. 被引量:1
  • 7TAO Y, WINKLER M. Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis systemwith consumption of chemoattractant[ J]. J. Differential Equations,2010,252(3). 被引量:1
  • 8LI Y. Global bounded solutions and their asymptotic properties under small initial is system for two species[J]. J. Math. Anal. Appl. ,2015,429(2) :1291-1304. 被引量:1
  • 9CHOI Y S, WANG Z A. Prevention of blow-up by fast diffusion in chemotaxis[ J] 564. :2520-2543. 被引量:1
  • 10data condition in a two-dimensional ehemotax- J. Math. Anal. Appl. ,2010,362(2):553- DELGADO M, GAYTE I, MORALES-RODRIGO C, SU~REZ A. An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundary[ J]. Nonlinear Anal. ,2010,72( 1 ) :330-347. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部