摘要
研究了一个关于两个物种趋化模型的初边值问题{u_t=△u-▽·(uχ_1(w)△w)+μ_1u(1-u),x∈Ω,t>0,vt=△v-▽·(vχ_2(w)△w)+μ_2v(1-v),x∈Ω,t>0,wt=△w+u-w-vw x∈Ω,t>0{,其中ΩR^n(n≥1)是边界光滑的有界区域,χ_i(w)(i=1,2)为趋化敏感函数且满足χ_i(w)≤χ_i/(1+α_iw)^(δ_i),初值u_0,v_0∈C^0(Ω)和w_0∈W^(1,∞)(Ω)且χ_i,α_i,μ_1和μ_2为正,δ_i>1。则当参数槇χ_i和μ_1+μ_2满足一定条件时,表明此模型的初边值问题有唯一的经典解且一致有界。
This paper deals with the global boundedness of the two-species chemotaxis system{ut= △u- ▽·( uχ1( w) △w) + μ1u( 1- u), x∈Ω,t 0,vt= △v- ▽·( vχ2( w) △w) + μ2v( 1- v), x∈Ω,t 0,wt= △w + u- w- vw x∈Ω,t 0,under homogeneous Neumann boundary condition in a smoothly bounded domain ΩR^n( n≥1),with nonnegative intial data u0,v0∈C^0(Ω^-) and w0∈W^1,∞( Ω).χi,αi,μ1has a chemotactic sensitivity function and satisfies χi( w) ≤χi/( 1 + αiw)^(δi),where the parameters χi,αi,μ1 and μ2 are positive δ_i 1. Under the condition that χ1,χ2and μ1+ μ2 satisfy some specified conditions,the corresponding initial-boundary value problem possesses a unique global classical solu_tion and is uniformly bounded.
出处
《西华师范大学学报(自然科学版)》
2016年第1期17-24,1,共8页
Journal of China West Normal University(Natural Sciences)
基金
国家自然科学基金项目(11371384)
重庆市自然科学基金项目(cstc2015jcyjBX0007)