摘要
微细切削技术是传统加工工艺向微观尺度的延伸,在微加工领域具有重要的作用,尤其适用于三维零件及微结构的加工。与其他微细切削技术相比,微细磨削技术具有加工零件棱边精度高、适于硬脆性材料加工等优势,但其存在加工效率低、磨削热量大、微砂轮易磨损等缺陷。已有研究表明,于机械加工辅加超声振动的复合加工技术可有效降低切削力、切削温度,增大脆性材料脆-塑转变临界切削深度,改善加工表面质量等。因而超声振动辅助微磨削技术被认为是一种可有效解决微磨削加工现存缺陷的技术。主要从微磨削技术研究现状、尺寸效应机理研究、脆性材料塑性域去除机理研究、超声振动切削实验研究、超声振动切削断续切削机理研究及微磨削动态有效磨刃密度建模研究六个方面,对微磨削技术及超声振动辅助切削技术相关领域研究进行综述,并探讨超声振动辅助微细磨削技术加工机理研究及未来发展需注重解决的问题。
As an extension of traditional machining to important role in the micro-manufacturing field, particularly micro-scale processing, micro-machining technology plays an in processing three-dimensional parts and micro-structures. Compared with other micro-machining technologies, micro-grinding technology has the advantage of high edge-machining precision, adaptability for processing of hard and brittle materials, and so on. However, it is characterized by defects of low processing efficiency, grinding heat, and a wheel that wears out easily. Previous studies show that ultrasonic vibration- assisted machining can effectively reduce cutting force and cutting heat, enlarge the critical cutting depth of brittle-ductile transition, and improve surface quality. Ultrasonic vibration-assisted micro-grinding technology is believed to be able to solve the problems of micro-grinding. In the present paper, studies in the related fields of micro-grinding technology and ultrasonic vibration-assisted machining technology are reviewed mainly from the perspective of research on micro-grinding technology; brittle-ductile transition; size effect; experimental studies on ultrasonic vibration-assisted machining, interrupted cutting, dynamic cutting-edge density and an outlook on further study and future developments.
出处
《振动与冲击》
EI
CSCD
北大核心
2016年第8期97-109,共13页
Journal of Vibration and Shock
基金
河北省自然科学基金项目(E2012202088
E2012202112)
河北工业大学优秀青年科技创新基金项目(2012011)
关键词
微磨削
超声振动
塑性域去除
尺寸效应
断续切削
有效磨刃密度
micro-grinding
ultrasonic vibration
brittle-ductile transition
size effect
interrupted cutting
cutting edge density