期刊文献+

基于私有云和改进粒子群算法的约束优化求解 被引量:4

Constrained optimization problems solving based on private cloud and improved particle swarm optimization
下载PDF
导出
摘要 为提高约束优化模型的求解准确度和运算速度,针对粒子群算法及其计算方法进行了改进。引入多样化机制避免算法陷入局部最优的危险:创建多个子群将决策空间划分为多个搜索子空间,多子群独立搜索以保证群间解的多样化;用量子粒子代替普通粒子,为其添加服从球状分布的伴随粒子来提高群内解的多样化。多样化的引入增加了计算量和计算复杂度,利用并行计算提高算法运行速度:分析了改进粒子群算法并行计算的方法,在私有云计算平台上编写了基于MapReduce的并行求解流程。实验结果表明,本文方法具有较高准确度,算法的稳定性也较好,运算速度可成倍提高。 In order to solve constrained optimization problems with higher accuracy and faster computing speed, several improvements are raised on particle swarm optimization(PSO) and its computing method. Solu- tions' diversification mechanism is applied in PSO to improve its global optimization ability., decision space is di- vided into multiple searching subspaces, while multi-subswarms are created according to those searching sub- spaces, and multi-subswarms are searched independently to get solutions' diversification among subswarms; or- dinary particles is replaced by quantum particles in PSO, while associated particles that follow globular distribu- tion is vested in each quantum particle, which could improve solutions' diversification in subswarms. Running speed of the improved PSO is increased via parallel computing: Parallel computing flow of the improved PSO is analyzed based on the private cloud platform and the algorithm for the flow is programmed based on MapRe- duce. The experimental results show that the proposed method has higher accuracy solutions and stability, and the performance and computing speed is exponentially improved.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2016年第5期1086-1092,共7页 Systems Engineering and Electronics
关键词 约束优化 粒子群算法 私有云计算平台 并行求解 多样化 constrained optimization particle swarm optimization (PSO) private cloud platform parallel solving diversification
  • 相关文献

参考文献17

  • 1王勇,蔡自兴,周育人,肖赤心.约束优化进化算法[J].软件学报,2009,20(1):11-29. 被引量:116
  • 2Saber M E,Ruhul A S,Efren M.Self-adaptive mix of particle swarm methodologies for constrained optimi zation[J].Information Sciences,2014,277(9):216-233. 被引量:1
  • 3Bonyadi M R,Michalewicz Z.Locating potentially disjoint feasible regions of a search space with a particle swarm optimizer[M]. Berlin:Springer Press,2014:205-230. 被引量:1
  • 4Kennedy J,Eberhart R.Particle swarm optimization[C]//Proc.of the IEEE International Conference on Neural Networks,1995;1942-1948. 被引量:1
  • 5Cagnina L C,Esquivel S C,Coello C A.A particle swarm optimizer for constrained numerical optimization [M].Berlin:Springer Press,2006:910-919. 被引量:1
  • 6Cagnina L C,Esquivel S C,Coello C A.Solving constrained optimization problems with a hybrid particle swarm optimization algorithm[J].Engineering Optimization,2011,43(8):843-866. 被引量:1
  • 7Liang J J,Suganthan P N.Dynamic multi-swarm particle swarm optimizer with a novel constraint handling mechanism [C]// Proc.of the IEEE Congress on Evolutionary Computation,2006:9-16. 被引量:1
  • 8Paquet U,Engelbrecht A P.Particle swarms for linearly constrained optimisation[J].Fundamenta Informaticae,2007,76(2):147-179. 被引量:1
  • 9Bonyadi MR,Li X,Michalewicz Z.A hybrid particle swarm with velocity mutation for constraint optimization problems [C]// Proc.of the Genetic and Evolutionary Computation Conference,2013:1-8. 被引量:1
  • 10Liang J J,Shang Z G,Li Z H.Coevolutionary comprehensive learning particle swarm optimizer [C]// Proc.of the IEEE Congress on Evolutionary Computation,2010:1-8. 被引量:1

二级参考文献4

共引文献115

同被引文献23

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部