摘要
现有方法在求解工业机器人固定路径下的时间最优轨迹规划时,存在计算量大、规划时间长等弊端.为此,首先利用关节空间速度约束不等式,获得关节速度约束下相空间最大速度约束曲线;然后再利用关节加速度/扭矩约束不等式,获得加速度/扭矩约束下的必要最大速度曲线;对这两种最大速度曲线求交集,获得多重约束下的最大速度曲线.最后,采用修型/射靶算法,矫正多重约束下的最大速度曲线,得到最优时间轨迹.通过实验,验证了该算法的高效性和实时性.
For the existing methods, it will cost a lot of time and computation to solve time-optimal trajectory planning problem of industrial robots along fixed path. To solve this problem, the maximum phase speed profile is obtained firstly by using velocity constraint inequality in joint space. Then, the necessary maximum constraint speed curve is obtained by using joint acceleration/torque constraint inequality. By intersection operation for the above two maximum speed curves, the maximum speed curve under multiple constraints is obtained. Finally, the time optimal trajectory is obtained by correcting the maximum speed curve under multiple constraints with the pruning/shooting algorithm. The efficiency and real-time performance of the proposed algorithm is demonstrated by experiment.
出处
《机器人》
EI
CSCD
北大核心
2016年第2期233-240,共8页
Robot
基金
国家自然科学基金(51475185)
甘肃省自然科学基金(145RJZA091)
关键词
工业机器人
时间最优
多重约束
修型/射靶算法
industrial robot
time-optimal
multiple constraints
pruning/shooting algorithm