期刊文献+

基于修型/射靶算法的工业机器人固定路径时间最优轨迹规划 被引量:11

Time-Optimal Trajectory Planning Based on the Pruning/Shooting Algorithm for Industrial Robot along Specified Paths
原文传递
导出
摘要 现有方法在求解工业机器人固定路径下的时间最优轨迹规划时,存在计算量大、规划时间长等弊端.为此,首先利用关节空间速度约束不等式,获得关节速度约束下相空间最大速度约束曲线;然后再利用关节加速度/扭矩约束不等式,获得加速度/扭矩约束下的必要最大速度曲线;对这两种最大速度曲线求交集,获得多重约束下的最大速度曲线.最后,采用修型/射靶算法,矫正多重约束下的最大速度曲线,得到最优时间轨迹.通过实验,验证了该算法的高效性和实时性. For the existing methods, it will cost a lot of time and computation to solve time-optimal trajectory planning problem of industrial robots along fixed path. To solve this problem, the maximum phase speed profile is obtained firstly by using velocity constraint inequality in joint space. Then, the necessary maximum constraint speed curve is obtained by using joint acceleration/torque constraint inequality. By intersection operation for the above two maximum speed curves, the maximum speed curve under multiple constraints is obtained. Finally, the time optimal trajectory is obtained by correcting the maximum speed curve under multiple constraints with the pruning/shooting algorithm. The efficiency and real-time performance of the proposed algorithm is demonstrated by experiment.
出处 《机器人》 EI CSCD 北大核心 2016年第2期233-240,共8页 Robot
基金 国家自然科学基金(51475185) 甘肃省自然科学基金(145RJZA091)
关键词 工业机器人 时间最优 多重约束 修型/射靶算法 industrial robot time-optimal multiple constraints pruning/shooting algorithm
  • 相关文献

参考文献10

  • 1LaValle S M. Planning algorithms[M]. Cambridge, UK: Cam- bridge University Press, 2006. 被引量:1
  • 2Donald B, Xavier P, Canny J, et al. Kinodynamic motion plan- ning[J]. Journal of the ACM, 1993, 40(5): 1048-1066. 被引量:1
  • 3Shin K G, McKay N D. Selection of near-minimum time geo- metric paths for robotic manipulators[J]. IEEE Transactions on Automatic Control, 1986, 31 (6): 501-511. 被引量:1
  • 4Debrouwere F, van Loock W, Pipeleers G, et al. Time-optimal path following for robots with convex-concave constraints us- ing sequential convex programming[J]. IEEE Transactions on Robotics, 2013, 29(6): 1485-1495. 被引量:1
  • 5Pham Q C. A general, fast, and robust implementation of the time-optimal path parameterization algorithm[J]. IEEE Trans- actions on Robotics, 2014, 30(6): 1533-1540. 被引量:1
  • 6Messner L, Gattringer H, Bremer H. Efficient online compu- tation of smooth trajectories along geometric paths for robotic manipulators[M]. Multibody System Dynamics, Robotics and Control. Vienna, Austria: Springer, 2013: 17-30. 被引量:1
  • 7Kunz T, Stilman M. Time-optimal trajectory generation for path following with bounded acceleration and velocity[C]//2012 Robotics: Science and Systems. Cambridge, USA: MIT Press, 2013: 230-237. 被引量:1
  • 8Flores F G, Kecskemrthy A. Time-optimal path planning a- long specified trajectories[M]//Multibody System Dynamics, Robotics and Control. Vienna, Austria: Springer, 2013: 1-16. 被引量:1
  • 9Severin S, Rossmann J. A comparison of different metaheuris- tic algorithms for optimizing blended PTP movements for in- dustrial robots[C]//5th International Conference on Intelligent Robotics and Applications. Berlin, Germany: Springer, 2012: 321-330. 被引量:1
  • 10Liu H S, Lai X B, Wu W X. Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic con- straints[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(2): 309-317. 被引量:1

同被引文献237

引证文献11

二级引证文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部