期刊文献+

耦合Higgs方程和Maccari系统的行波解分支 被引量:2

Bifurcations of Exact Travelling Wave Solutions to Coupled Higgs Equations and Maccari Systems
下载PDF
导出
摘要 利用动力系统方法,对耦合Higgs方程和Maccari系统的定性行为和行波解进行了研究.基于这种方法,给出了系统在不同参数条件下的相图,得到了包括孤立波解和周期波解在内的行波解.运用数值模拟的方法,对方程的光滑孤立波解和周期波解进行了数值模拟.获得的结果完善了相关文献已有的研究成果. With the dynamical system method,the qualitative performance of and the exact travelling wave solutions to the coupled Higgs equations and the M accari systems were studied. Based on this method,all phase portraits of the systems in the parametric space were given. All possible bounded travelling wave solutions such as the solitary wave solutions and the periodic travelling wave solutions were obtained.Through numerical simulation,the smooth solitary wave solutions and the periodic travelling wave solutions were picturized. The results showthat the present findings improve the related previous conclusions.
出处 《应用数学和力学》 CSCD 北大核心 2016年第4期434-440,共7页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11261065)~~
关键词 耦合Higgs方程 Maccari系统 动力系统方法 行波解 分支 coupled Higgs equation Maccari system dynamical system travelling wave solution bifurcation
  • 相关文献

参考文献9

  • 1FENG Zhao-sheng,WANG Xiao-hui.The first integral method to the two-dimensional Burgers-Korteweg-de Vries equation[J].Physics Letters A,2003,308(2/3):173-178. 被引量:1
  • 2Abbasbandy S,Shirzadi A.The first integral method for modified Benjamin-Bona-Mahony equation[J].Communications in Nonlinear Science and Numerical Simulation,2010,15(7):1759-1764. 被引量:1
  • 3Wazwaz A M.The extended tanh method for new compact and noncompact solutions for the KP-BBM and the ZK-BBM equations[J].Chaos,Solitons & Fractals,2008,38(5):1505-1516. 被引量:1
  • 4CHEN Yong,WANG Qi.Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic functions solutions to (1+1)-dimensional dispersive long wave equation[J].Chaos,Solitons & Fractals,2005,24(3):745-757. 被引量:1
  • 5李继彬.(2+1)-维广义Benney-Luke方程的精确行波解[J].应用数学和力学,2008,29(11):1261-1267. 被引量:7
  • 6LI Ji-bin,ZHANG Li-jun.Bifurcations of traveling wave solutions in generalized Pochhammer-Chree equation[J].Chaos,Solitons & Fractals,2002,14(4):581-593. 被引量:1
  • 7LI Ji-bin,ZHANG Yi.Exact loop solutions,cusp solutions,solitary wave solutions and periodic wave solutions for the special CH-DP equation[J].Nonlinear Analysis:Real World Applications,2009,10(4):2502-2507. 被引量:1
  • 8LI Ji-bin,CHEN Guan-rong.Bifurcations of travelling wave solutions for four classes of nonlinear wave equations[J].International Journal of Bifurcation and Chaos,2005,15(12):3973-3998. 被引量:1
  • 9Hafez M G,Alam M N,Akbar M A.Traveling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system[J].Journal of King Saud University-Science,2014,27(2):105-112. 被引量:1

二级参考文献6

  • 1Quintero J R. Solitons and periodic traveling waves for the 2D-generalized Benney-Luke equation [J]. Applicable Analysis, 2007,86 ( 3 ) : 331-351. 被引量:1
  • 2Mondragon E I. A remark on the stability of solitary waves for 1-D Benney-Luke equation[J]. Mathematicas : Ensenanza Universitaria, 2006,14( 1 ) : 59-73. 被引量:1
  • 3LI Ji-bin,DAI Hui-hui. On the Study of Singular Nonlinear Traveling Wave Equations: Dynamical System Approach[M]. Beijing : Science Press, 2007. 被引量:1
  • 4LI Ji-bin, CHEN Guan-rong. Bifurcations of travelling wave solutions for four classes of nonlinear wave equations[J]. Internat J Bifurcation and Chaos, 2005,15(12) : 3973-3998. 被引量:1
  • 5Byrd P F, Fridman M D. Handbook of EUiptic Integrals for Engineers and Svientists [M]. Berlin : Springer, 1971. 被引量:1
  • 6Guckenheimer J, Holmes P J. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fiehts[M]. New York : Springer-Verlag, 1983. 被引量:1

共引文献6

同被引文献6

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部