期刊文献+

改进的FP-growth算法及其在TE过程故障诊断中的应用 被引量:6

Improved FP-growth Algorithm With Applications in TE Process Fault Diagnosis
下载PDF
导出
摘要 为了解决频繁模式增长(frequent pattern growth,FP-growth)算法因多次遍历频繁集列表而产生庞大频繁模式树需占用大量内存降低了运行效率的问题,提出一种改进的FP-growth(upgraded FP-growth,UFP)算法.首先,构造支持度函数实现各项与其支持度的映射,使算法的运行效率得到提高;其次,利用关键字筛选技术,把频繁项分成关键项表、非关键项表两部分,保证了最终获取的每条关联规则都是人们关注的有效信息;最后,根据频繁1-项集划分数据库子集并直接构造每一项的条件模式树,节省了内存空间.将UFP算法应用于Tenessee Eastman(TE)过程的故障诊断,通过与主成分分析(principal component analysis,PCA)、核主成分分析(kernel principal component analysis,KPCA)算法在多种故障下的诊断结果对比实验验证了算法的优越性. FPgrowth algorithm is very effective for mining frequent itemsets. However, the huge frequentpattern trees generated due to repeat Flist searching consume a large amount of memory and lead to lowefficiency. In response to these drawbacks, this paper presented an improved algorithm, termed as UFPalgorithm (upgraded FPgrowth). First, it used support function to map the support rate with each itemin order to improve the operating efficiency. Second, it took advantage of keyword filtering technology todevide the Flist into two parts, keyitem list and noncritical list, ensuring the association rules whichultimately were obtained, were all valid information. Finally, it divided the whole database into subsetsaccording to the first frequent itemsets and constructed condition pattern trees directly which saved lots ofmemory space. This paper applied UFP algorithm into TE process for fault diagnosis. The comparativeexperiments with PCA and KPCA algorithm under different process faults improve its superiority.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2016年第5期697-706,共10页 Journal of Beijing University of Technology
基金 中央高校基本科研业务费资助项目(YS1404)
关键词 频繁模式增长(FP-growth)算法 关联规则 Tenessee Eastman(TE)过程 故障诊断 FPgrowth algorithm association rule Tenessee Eastman (TE) process fault diagnosis
  • 相关文献

参考文献17

  • 1AGRAWAL R, IMIELINSKI T, SWAMI A. Miningassociation rules between sets of items in large databases[J]. Proceedings of the ACM SIGMOD Conference onManagement of Data, 1993(12): 207-216. 被引量:1
  • 2AGRAWAL R, SHAFER J. Parallel mining of associationrules: design, implementation, and experience [R]. SanJose: IBM Almaden Research Center, 1996. 被引量:1
  • 3HAN J W, YAN X F. Scalable OLAP and mining ofinformation networks [C] //Proceedings of the 12thInternational Conference. Saint Petersburg: ASNT, 2009. 被引量:1
  • 4TOHIDI H, IBRAHIM H. A frequent pattern miningalgorithm based on FP-growth without generating tree [J].Proceedings of Knowledge Management 5th InternationalConference, 2010(34): 723-728. 被引量:1
  • 5SILVA A, ANTUNES C. Pattern mining on stars with FP-growth [J]. Lecture Notes in Artificial Intelligence, 2010(5): 175-186. 被引量:1
  • 6WANG H, YUNGYEON B. Advanced FP-growth using bitclustering in data mining [J]. Journal of KIISE:Databases, 2011, 38(5): 280-288. 被引量:1
  • 7CHEN K, ZHANG L J, LI S K, et al. Research onassociation rules parallel algorithm based on FP-growth[J]. Communications in Computer and InformationScience, 2011, 244(2): 249-256. 被引量:1
  • 8WANG H B, LIU YC, WANG C D. Research onassociation rule algorithm based on distributed andweighted FP-growth [J]. Advances in Intelligent and SoftComputing, 2011, 128(1): 133-138. 被引量:1
  • 9TOTAD S G, GEETA R B, REDDY, et al. Batchincremental processing for FP-tree construction using FP-growth algorithm [J]. Knowledge and InformationSystems, 2012, 33(2): 475-490. 被引量:1
  • 10WANG C H, LEE W H, PANG C T. Fuzzy data miningfor quantitative transaction with FP-growth [J]. Journalof Nonlinear and Convex Analysis, 2013, 14(1): 193-207. 被引量:1

同被引文献59

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部