期刊文献+

免疫细胞因子网络模型设计与仿真研究 被引量:3

Simulation research and design of immune cytokine network model
下载PDF
导出
摘要 针对免疫细胞因子网络,提出CKSIM模型,并利用Net Logo对其进行可视化仿真。该模型主要研究的是免疫细胞、抗原、抗体、细胞因子之间的相互作用关系,并且给出了仿真的具体步骤和仿真结果。研究表明,计算机仿真比传统的手工实验具有可视化程度高、容易控制、参数易调节等优点,利用计算机仿真可以研究整个的细胞因子对免疫细胞共同作用所涌现出来的规律。今后的研究可以以此模型为基础,不断进行改进,以促进对免疫细胞因子网络的研究。 CKSIM model is proposed in allusion to the immune cell cytokine network. The visual simulation for it is achieved by utilizing Net Logo,by which the interaction relationship among the immune cell,antigen,antibody and cytokine is researched mainly. The detailed steps and results of simulation are given. The results show that the computer simulation has the advantages of higher visual level,easier control and more simple regulation for parameters than the traditional handwork experiment. It can help studying the regularity of combined action between the whole cytokines and immune cells. The Future research can be based on this model to promote the study of immune cytokine network.
作者 周碧 段富
出处 《现代电子技术》 北大核心 2016年第8期21-25,29,共6页 Modern Electronics Technique
基金 山西省科技攻关项目(20130321001-09) 山西省科技基础条件平台计划项目(2012091003-0103) 山西省卫生厅科技攻关计划项目(2011119)
关键词 免疫细胞因子网络 CKSIM模型 可视化仿真 计算机仿真 immune cytokine network CKSIM model visual simulation computer simulation
  • 相关文献

参考文献10

  • 1杨晓飞..免疫系统的计算机模型及应用[D].扬州大学,2013:
  • 2莫宏伟,郭茂祖,毕晓君.人类免疫系统仿真与建模研究综述[J].计算机仿真,2008,25(1):11-15. 被引量:4
  • 3CHENG X, CHEN B. The simulation system of eytokine net- work based IMMUNE-B [J]. Lecture notes in computer science, 2011, 56(7): 580-587. 被引量:1
  • 4阳雪平..形式化B方法及在因子网络建模中的应用[D].扬州大学,2007:
  • 5CAVALLA F, ARAUJO-PIRES A C, BIGUETTI C C, et al Cytokine networks regulating inflammation aod immune dt,- fense in the oral cavity [J], Current oral health reports, 2014. 1 (2): 104-113. 被引量:1
  • 6曹新学..免疫系统的可视化计算模型研究[D].东华大学,2014:
  • 7ZOU S, YANG X, DU Z, et al. Modeling and simulating influen- za with immune-B IC]// Proceedings of tile 2013 lOth Web In- formation System and Application Conference. Yangzhou: IEEE, 2013: 229-236. 被引量:1
  • 8LISOWSKA B, SZYMAlqSKA M, NOWACKA E, et al. Anes- thesiology and the cytokine network [J]. Postepy higieny I medy- cyny doswiadczalnej, 2013, 67(4): 761-769. 被引量:1
  • 9莫宏伟.免疫系统应答仿真研究[J].计算机工程与应用,2009,45(11):1-4. 被引量:3
  • 10邹盛荣,阳雪平,郭峰,王凯,王金津,顾小石.免疫因子网络的Immune-B模型设计[J].吉首大学学报(自然科学版),2006,27(3):27-32. 被引量:4

二级参考文献51

  • 1Fanelli R L.A hybrid model for immune inspired network intrusion detection[C]//Proc of 7th International Conference on Artificial Immune Systems, 2008 : 107-118. 被引量:1
  • 2Read M,Timmis J,Andrews P S.Empirical investigation of an artificial cytokine network[C]//Proc of 7th International Conference on Artificial Immune Systems, ICARIS 2008,2008 : 340-351. 被引量:1
  • 3Perelson A S,Weisbuch G.Immunology for physicists[J].Reviews of Modern Physics, 1997,69(4) : 1219-1267. 被引量:1
  • 4Forrest S,Smith R,Javornik E B,et al.Using genetic algorithms to explore pattern recognition in the immune system[J].Evotutionary Compuatation, 1993,1 (30) : 191-211. 被引量:1
  • 5Celada F,Seiden P E.Affinity maturation and hypermutation in a stimulation of the humoral response[J].Europe Journal of Immunology, 1996,26(6) : 1350-1358. 被引量:1
  • 6Jacob C, Litorcol J, Lee L.Immunity through swarms : agent-based simulations of the human immune system[C]//Proc of 3rd International Conference on Artificial Immune Systems,2004:400-412. 被引量:1
  • 7Farmer J D,Packard N,Perelson A.The immune system,daptation and machine learning[J].Physica D, 1986,22:187-204. 被引量:1
  • 8Puzone R,Kohler B,Seiden P,et al.IMMSIM,a flexible model for in machine experiments on immune system respenses[J].Future Generation Computer Systems,2002:961-972. 被引量:1
  • 9Tieri P,Valensin S,Franceschi C,et al.Memory and selectivity in evolving scale-free immune networks[M].Timmis J.ICARIS 2003, Berlin: Springer-Verlag, 2003 : 93-101. 被引量:1
  • 10Monroy R,Sabb R,Godiner F.On modelling an immune system[J]. Computation System,2004,7(4) :249-259. 被引量:1

共引文献8

同被引文献28

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部