摘要
以某车悬架非线性振动为研究对象,建立了系统振动微分方程,提出所考虑的悬架非线性因素,用龙格-库塔方法在MATLAB中对系统运动方程求解;对该车进行随机路面平顺性实验,验证所建模型的合理性,结合数值求解结果和实验数据分析考虑悬架非线性因素对平顺性分析的影响。研究表明通过数值计算分析分析平顺性时,在高速条件下考虑悬架阻尼非线性的影响更能准确的反映对平顺性的预测,这对优化数值模型和理论分析具有参考价值。
Research on the nonliner of a car 's suspension. Set up differential equation and put forward its nonliner part. Solve the equation by the mothed of Runge-Kutta. Complete the road randomized trials and prove the rationality of the equation. Combining with the matlab and the expreiment,study the influence of nonliner of suspension on harshness. It show that considering the influence of nonlinear can help to analysis vehicle ride comfort under the high speed condition,which has the reference value on the optimization model and the theoretical analysis.
出处
《机械设计与研究》
CSCD
北大核心
2016年第2期151-154,共4页
Machine Design And Research
基金
云南省院省校科技合作专项(2013ID001)
关键词
悬架
非线性
平顺性
suspension
nonliner
harshness