期刊文献+

悬浮微粒在被加热多孔介质内的沉积与运移特性

Deposition and transportation characteristics of suspended microparticles in water through heated porous media column
下载PDF
导出
摘要 通过建立沿管壁恒热流加热的渗流实验系统,实验研究了悬浮颗粒在饱和多孔介质内以及入口界面处的沉积和运移特性。着重研究了有无加热条件,以及不同加热温差,相同多孔介质和进口悬浮液浓度情况下,实验段入口界面处与内部的颗粒沉积量变化,以及沿程不同位置处的压力变化。并对实验过程中的渗流稳定性及各测点温度和多孔介质段渗透系数进行了分析。结果表明:相对渗透率kt/k0在不同温差下有明显不同;多孔介质与进口流体界面处的沉积量随温差的增大而增加,沉积结构的稳定性降低;多孔介质段颗粒沉积强度随温差的增大而增大,实验结果可为今后的理论分析提供验证依据。 The deposition and transportation characteristics of microparticles suspended water flowing vertically downwards through a heated porous column were experimentally studied. The amount of deposited particles at the interface and inside porous column, and pressure change at difference location at the conditions with and without circumference heating, or the effect of temperature gradient perpendicular to the flow direction were focused in this study, in which the porous columns and inlet concentration of suspended fluid were kept the same. In addition, the seepage stability, the tube wall temperature distribution and the relative permeabilities for each section were analyzed. The results showed that the relative permeability kt/k0 was obviously different at different heating temperature gradients while having the same original porous media and inlet concentration of suspensions. The deposition rates both at the entrance interface and inside porous medium increased with an increase of temperature difference, however, the stability of the deposited structure decreased.
出处 《化工学报》 EI CAS CSCD 北大核心 2016年第4期1433-1439,共7页 CIESC Journal
基金 国家自然科学基金青年项目(51306130)~~
关键词 多孔介质 微小颗粒 界面沉积 温差 相对渗透系数 porous media microsized particles interface deposition temperature difference relative permeability
  • 相关文献

参考文献6

二级参考文献33

  • 1刘培生.多孔材料孔径及孔径分布的测定方法[J].钛工业进展,2006,23(2):29-34. 被引量:47
  • 2王补宣,王仁.含湿建筑材料的导热系数[J]工程热物理学报,1983(02). 被引量:1
  • 3杨瑞昌,刘若雷,周涛,赵磊.可吸入颗粒物在管内湍流流动时的动力学特性及热泳沉积(英文)[J]Chinese Journal of Chemical Engineering,2008(02). 被引量:1
  • 4Xu S, Gao B, Saiers J E. Straining of colloidal particles in saturated porous media [J]. Water Resources Research, 2006, 42 (12): W12S-W16S. 被引量:1
  • 5Rege S D, Fogler H S. Network model for straining dominated particle entrapment in porous media [J]. Chemical Engineering Science, 1987, 42 (7): 1553-1564. 被引量:1
  • 6Gibson L J, Ashby M F. Cellular Solids: Structure and Properties [M]. 2nd ed. Cambridge: Cambridge University Press, 1999:532. 被引量:1
  • 7Langlois S, Coeuret F. Flow-through and flow-by porous electrodes of nickel foam ( Ⅰ ): Material characterization [J]. Journal of Applied Electrochemistry, 1989, 19 (1): 43-50. 被引量:1
  • 8Hoefner M L, Fogler H S. Pore evolution and channel formation during flow and reaction in porous media [J]. A1ChE Journal, 1988, 34 (1): 45-54. 被引量:1
  • 9Chalk P, Gooding N, Hutten S, You Z, Bedrikovetsky P. Pore size distribution from challenge coreflood testing by colloidal flow [J]. Chemical Engineering Research andDesign, 2012, 90 (1): 63-77. 被引量:1
  • 10Banhart J. Manufacture, characterisation and application of cellular metals and metal foams [J]. Progress in Materials Science, 2001, 46 (6): 559-632. 被引量:1

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部