期刊文献+

基于光谱区分法的高光谱核异常检测算法 被引量:23

Kernel Anomaly Detection Method in Hyperspectral Imagery Based on the Spectral Discrimination Method
下载PDF
导出
摘要 为了解决高光谱目标检测中高斯径向基核、光谱相似度量核难以同时描述光谱曲线整体及局部特性的问题,利用光谱信息散度与梯度角正切相结合的光谱区分方法构造了一种新的核函数.对真实机载可见红外成像光谱仪高光谱数据进行高光谱核异常检测,得到二值图及接收机操作特性曲线.结果表明,在低虚警率下,相比于高斯径向基核、光谱相似度量核,本文所提出核函数在高光谱核异常检测中准确度与清晰度更高. To solve the problem that the overall and local characteristics of the curves of spectrum are difficultly described by the Gaussian radial basis function and the spectral similarity measurement kernel simultaneously in a hyperspectral imagery detection,a novel kernel anomaly detection method in hyperspectral imagery based on the spectral discrimination method was proposed.A kernel anomaly detection in hyperspectral was conducted by real hyperspectral images collected by airborne visible infrared imaging spectrometer.The binary graph and receiver operating characteristic curve of the anomaly detection were attained.The results show that,for a lower false alarm rate in a hyperspectral imagery detection,compared with the Gaussian radial basis function and the spectral similarity measurement kernel,the proposed kernel can detect the abnormal targets with a higher accuracy and clarity.
出处 《光子学报》 EI CAS CSCD 北大核心 2016年第3期138-142,共5页 Acta Photonica Sinica
基金 国家自然科学基金(No.61271353) 安徽省自然科学基金(No.KY11070)资助~~
关键词 高光谱图像 异常检测 光谱区分方法 核函数 RX Hyperspectral imagery Anomaly detection Spectral discrimination method Kernel function RX
  • 相关文献

参考文献14

  • 1DU B, ZHANG L. A discriminative metric learning based anomaly detection method [J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(11): 6844-6857. 被引量:1
  • 2DU B, ZHANG L. Target detection based on a dynamic subspace[J], Pattern Recognition, 2014, 47(1) : 344-358. 被引量:1
  • 3SCHAUM A. Spectral subspace matched filtering [C]. Proceedings of the SPIE-the International Society for Optical Engineering, 2001, 4381:1- 17. 被引量:1
  • 4HARSANYI J C, CHANG C I. Hyperspectral image classification and dimensionality reduetion: An orthogonal subspaee projection approach [J]. IEEE Transaction on Geoscience and Remote Sensing, 1994, 32(4) : 779-785. 被引量:1
  • 5DU B, ZHANG Y, ZHANG L, et al. A hypothesis independent subpixel target detector for hyperspectral images [J]. Signal Processing, 2015, 110: 244-249. 被引量:1
  • 6REED I S,YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution [J]. IEEE Tran Sactions on Acoustics Speech and Signal Processing, 1990, 38(10) .,1760-1770. 被引量:1
  • 7HEESUNG K, NASRABADI N M. Kernel RX-algorithm.. anonlinear anomaly detector for hyperspectral imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2) .. 388-397. 被引量:1
  • 8梅锋,赵春晖,孙岩,王立国.基于新型光谱相似度量核的高光谱异常检测算法[J].光子学报,2009,38(12):3165-3170. 被引量:10
  • 9张修宝,袁艳,景娟娟,孙成明,王潜.信息散度与梯度角正切相结合的光谱区分方法[J].光谱学与光谱分析,2011,31(3):853-857. 被引量:17
  • 10WANG Liang-liang, LI Zhi-yong, SUN Ji-xiang. Anomaly detection in hyperspectral imagery based on spectral gradient and LLE[J]. Applied Mechanics and Materials, 2012, 121 (10) : 720-724. 被引量:1

二级参考文献55

共引文献61

同被引文献214

引证文献23

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部