摘要
对有外界干扰的二阶离散多智能体系统,研究了在马尔可夫切换拓扑结构下的均方有界一致性问题.首先,设计了一个带有智能体位置和速度信息的控制协议.其次,在随机有界干扰的情况下,借助于矩阵分析方法以及Lyapunov函数,得到了闭环系统实现均方有界一致所需的代数条件,同时给出了各智能体状态误差的上界.最后,数值仿真验证了理论结果的有效性.
This paper deals with the mean-square bounded consensus problem of second-order discrete-time multi-agent systems with stochastic bounded external disturbance under Markovian switching topological structures.Firstly,a control protocol is designed,which is based on the position and velocity information of each agent.Secondly,in the case of stochastic bounded external disturbance,the algebraic conditions for the closed-loop system to achieve the mean-square bounded consensus are obtained by using the methods of matrix analysis and Lyapunov function.Simultaneously,the upper bound of each agent state error is also given.Finally,numerical simulations are given to illustrate the effectiveness of the theoretical results.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2016年第3期361-367,共7页
Control Theory & Applications
基金
国家自然科学基金项目(61304155)
北京市组织部优秀人才项目(2012D005003000005)资助~~
关键词
离散多智能体系统
随机有界干扰
马尔可夫切换
一致性
discrete-time multi-agent systems
stochastic bounded disturbance
Markovian switching
consensus