期刊文献+

Plant Circular RNAs (circRNAs): Transcriptional Regulation Beyond miRNAs in Plants 被引量:4

Plant Circular RNAs (circRNAs): Transcriptional Regulation Beyond miRNAs in Plants
原文传递
导出
摘要 Current plant functional genomics is converging on two as- pects to provide sustainable solutions to cater to the demands of the growing population: 1) engineering crops for sustainable food security, where recently identified CRISPR/Cas is playing a detrimental role (Belhaj et al., 2014) and 2) identifying regulators of the post-transcriptional regulation, which can be functionally engineered. Canonical splicing has been widely seen and associated with functional protein diversity in plants (Min et al., 2015) (Figure 1). Concurrent patterns of exonic and intronic splicing have revealed several new isoforms, Current plant functional genomics is converging on two as- pects to provide sustainable solutions to cater to the demands of the growing population: 1) engineering crops for sustainable food security, where recently identified CRISPR/Cas is playing a detrimental role (Belhaj et al., 2014) and 2) identifying regulators of the post-transcriptional regulation, which can be functionally engineered. Canonical splicing has been widely seen and associated with functional protein diversity in plants (Min et al., 2015) (Figure 1). Concurrent patterns of exonic and intronic splicing have revealed several new isoforms,
出处 《Molecular Plant》 SCIE CAS CSCD 2016年第2期192-194,共3页 分子植物(英文版)
  • 相关文献

参考文献13

  • 1Barrett, S.P., Wang, P.L, and Salzman, J. (2015). Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife 4:e07540. 被引量:1
  • 2Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N.J., and Nekrasov, V. (2014). Editing plant genomes with CRISPR/Cas9. Curt. Opin. Biotechnol. 32C:76-84. 被引量:1
  • 3Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K., and Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature 495:384-388. 被引量:1
  • 4Liu, Y.C., Li, J.R., Sun, C.H., Andrews, E., Chao, R.F., Lin, F.M., Weng, S.L., Hsu, S.D., Huang, C.C., Cheng, C., et al. (2015). CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res. 44:D209-D215. 被引量:1
  • 5Lu, T., Cui, L, Zhou, Y., Zhu, C., Fan, D., Gong, H., Zhao, Q., Zhou, C., Zhao, Y., Lu, D., et al. (2015). Transcriptome-wide investigation of circular RNAs in rice. RNA 21:2076-2087. 被引量:1
  • 6Min, X.J., Powell, B., Braessler, J., Meinken, J., Yu, F., and Sablok, G. (2015). Geneme-wide cataloging and analysis of alternatively spliced genes in cereal crops. BMC Genomics 16:721. 被引量:1
  • 7Molecular Plant 9, 192-194, February 2016 The Author 2016. 193. 被引量:1
  • 8Sablok, G., Srivastva, A.K., Suprasanna, P., Baev, V., and Ralph, P.J. (2015). isomiRs: increasing evidences of isomiRs complexity in plant stress functional biology. Front. Plant Sci. 6:949. 被引量:1
  • 9Salzman, J., Gawad, C., Wang, P.L., Lacayo, N., and Brown, P.O. (2012). Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7:e30733. 被引量:1
  • 10Wang, Y., and Wang, Z. (2015). Efficient backsplicing produces translatable circular mRNAs. RNA 21:172-179. 被引量:1

同被引文献2

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部