摘要
半群S称为rpp半群,若它的所有L*类都含幂等元.rpp半群S称为C—rpp半群,若它的幂等元集含于S的中心.这里利用半群上fuzzy同余的概念,引入了rpp半群上fuzzy左好同余的定义并得到了它的一些性质,给出了此类半群的刻画,并对具有某种特性的rpp半群(如强rpp半群和完备rpp)作了讨论.最后,得到了一类rpp半群为完备rpp半群的充要条件.以上结论是对Fountain关于rpp半群研究结果的推广和补充.
A semigroup S is called a rpp semigroup if every L'class of S contain an idempotent. A rpp semigroup is called C-rpp semigroup if its set of idempotents is a center of S. By using the concept of a fuzzy congruence relatiorL on semigroups, this paper introduces the notion of a fuzzy left good congruence relation on rpp semigroups, gives some properties and characterizations of fuzzy left good congruences on such semigroups, and studies some classes of rpp semigroups (for example, strongly rpp semigroup and perfect rpp semigroup ). Finally, sufficient and necessary conditions for a class of rpp semigroups to be perfect are proved, These results generalize and strengthen the results of Fountain on rpp semigroups.
出处
《数学的实践与认识》
北大核心
2016年第7期201-206,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(11261018
11361024
11261019
61263032
61462016)
江西省自然科学基金(20122BAB201018)