期刊文献+

基于遗传模拟退火优化的FCM算法在西部省区经济发展状况分类的研究 被引量:1

The Research of Fuzzy C-Means Algorithm Based on Genetic Algorithm and Simulated Annealing Algorithm to Classification of the Economic Development Situations of All Provinces in Western Regions
下载PDF
导出
摘要 模糊C-均值聚类(FCM)算法属于局部搜索优化算法,遗传算法和模拟退火算法的有机结合能使FCM算法更为有效准确。文章依据2013年的有关数据,利用主成分分析对聚类的特征变量降维,采用基于遗传模拟退火优化的模糊C-均值聚类算法,对西部各省区经济发展状况进行分类和分析,提供了分析大区内子区域经济发展状况的有效新方法,为西部省区经济发展状况的分析及制定相应对策探索了一条新途径。 The Fuzzy C-Means(FCM) algorithm belongs to the local search optimization algorithm. The combination of genetic algo-rithm and simulated annealing algorithm makes C-means(FCM) algorithm more effective and accurate. According to the relevant data of2013, using principal component to analyze the characteristics of clustering variable dimension reduction, adopting Fuzzy C-Means(FCM)algorithm based on the genetic simulated annealing optimization, classifying and analyzing economic development status of the westernprovinces and regions, this paper provides an effective new method for the regional economic development for the analysis of the westernprovinces and regions economic development and formulates corresponding measures to explore a new way.
出处 《广西科技师范学院学报》 2016年第1期127-130,119,共5页 Journal of Guangxi Science & Technology Normal University
基金 广西教育厅广西高校科研项目"基于数据挖掘的西部省区经济发展状况分析模型研究"(LX2014532) 广西哲学社会科学规划2013年度研究课题"基于数据挖掘的西部地区经济增长差异及协调发展研究"(13FJL006)
关键词 西部经济 模糊C-均值聚类 遗传算法 模拟退火算法 economy of the western regions Fuzzy C-Means genetic algorithm simulated annealing algorithm
  • 相关文献

参考文献6

二级参考文献29

  • 1Ali Kamrani, Wang Rong, Ricardo Gonzalez. A Genetic Algorithm Methodology for Data Mining and Intelligent Knowledge Acquisition[J]. Computers & Industrial Engineering,2001,40:361-377. 被引量:1
  • 2Bandyopadhyay S, Maulik U. Genetic Clustering for Automatic Evolution of Clusters and Application to Image Classification[J]. Pattern Recognition, 2002,35:1197-1208. 被引量:1
  • 3Richard J Roiger, Michael W Geatz. Data Mining a Tutorial-based Primer[M]. 北京:清华大学出版社,2003. 被引量:1
  • 4Edwin E H, Balchen J G.Dynamic optimization and production planning of thermal cracking operation[J].Chemical Engineering Science, 2001, 56 (3):989-997. 被引量:1
  • 5Li Ping (李平), Li Qi'an (李奇安), Lei Rongxiao (雷荣孝).Advanced control system development and application of ethylene cracking furnace[J].化工学报, 2011, 62 (8):2210-2216. 被引量:1
  • 6Xu R, Wunsch D.Survey of clustering algorithms[J].IEEE Transactions on Neural Networks, 2005, 16 (3):645-678. 被引量:1
  • 7Han J, Kamber M, Pei J.Data Mining:Concepts and Techniques[M].San Francisco:Morgan Kaufmann Publishers, 2006. 被引量:1
  • 8Guha S, Rastogi R, Shim K.CURE:an efficient clustering algorithm for large databases[J].Intelligent Information Systems, 2001, 26 (1):35-38. 被引量:1
  • 9Liu S H, Hou H F.A combination of mixture genetic algorithm and fuzzy C-means clustering algorithm//IEEE International Symposium on IT in Medicine & Education[C].IEEE, 2009:254-258 C-means clustering algorithm//IEEE International Symposium on IT in Medicine. 被引量:1
  • 10Zhang M, Zhang W, Sicotte H, et al.A new validity measure for a correlation-based fuzzy C-means clustering algorithm//Engineering in Medicine and Biology Society. Annual International Conference of the IEEE[C].IEEE, 2009:3865-3868. 被引量:1

共引文献19

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部