期刊文献+

蝙蝠算法优化极限学习机的电力负荷预测模型 被引量:11

Load forecasting based on bat algorithm optimizing extreme learning machine
下载PDF
导出
摘要 为提高电力负荷预测的准确性,提出蝙蝠算法优化极限学习的电力负荷预测模型.首先收集电力负荷历史数据,然后采用蝙蝠算法对延迟时间和嵌入维以及极限学习的隐含层结点数目进行优化,利用电力负荷历史数据进行重构,最后采用最优隐含层结点数目的极限学习机建立电力负荷预测模型,并采用具体数据仿真测试.实验结果表明:模型建立了整体性能优异的电力负荷预测模型,提高了电力负荷的预测精度. In order to forecast precision of power load, this paper proposed a new power load forecasting model based on extreme learning machine optimized by bat algorithm(BA-ELM). Firstly, the data of power load are collected, and then the bat algorithm is used to optimize the delay time and the embedding dimension and parameter of extreme learning machine, and phase space reconstruction is use to construct the data of power load, finally, the extreme learning machine which has good parameter is used to establish load forecasting model, and the simulation experiments is carried out on some power load data. The simulation results show that BA-ELM can build an overall performance outstanding power load forecasting model, and improve the power load prediction accuracy.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2016年第1期89-92,共4页 Journal of Liaoning Technical University (Natural Science)
基金 河南省科技计划重点项目(102102210416)
关键词 电力负荷 预测精度 蝙蝠算法 极限学习机 预测模型 Power load forecasting accuracy bat algorithm extreme learning machine forecasting model
  • 相关文献

参考文献10

二级参考文献68

共引文献111

同被引文献119

引证文献11

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部