期刊文献+

The General Design and Technology Innovations of CAP1400 被引量:3

CAP1400的总体设计和技术创新
下载PDF
导出
摘要 A historical review of in-vessel melt retention (IVR) is given, which is a severe accident mitigation mea- sure extensively applied in Generation III pressurized water reactors (PWRs). The idea of IVR actually originated from the back-fitting of the Generation 11 reactor Loviisa WER-440 in order to cope with the core-melt risk. It was then employed in the new deigns such as Westinghouse APIO00, the Korean APR1400 as well as Chinese advanced PWR designs HPRIO00 and CAP1400. The most influential phe- nomena on the IVR strategy are in-vessel core melt evolution, the heat fluxes imposed on the vessel by the molten core, and the external cooling of the reactor pressure vessel (RPV). For in-vessel melt evolution, past focus has only been placed on the melt pool convection in the lower plenum of the RPV; however, through our review and analysis, we believe that other in-vessel phenomena, including core degradation and relocation, debris formation, and coolability and melt pool formation, may all contrib- ute to the final state of the melt pool and its thermal loads on the lower head. By looking into previous research on relevant topics, we aim to identify the missing pieces in the picture. Based on the state of the art, we conclude by proposing future research needs. 压水堆CAP1400是基于中国核工业研发体系和装备制造能力以及非能动压水堆AP1000的引进和消化吸收,并经过集成创新与再创新而形成的具有自主知识产权的第三代非能动先进压水堆核电型号。本文通过对CAP1400的总体设计思路、主要性能指标和技术参数、电站安全设计,以及在安全性、经济性和先进性等方面的阐述,论述了CAP1400作为第三代压水堆堆型的技术内涵和技术创新。此外,作为国家科技重大专项的成果,CAP1400型号的研发促进了中国自主核电在研发设计、试验和设备制造水平方面的整体提升,实现了核电设计与装备技术由第二代到第三代的升级。
出处 《Engineering》 SCIE EI 2016年第1期103-111,共9页 工程(英文)
关键词 Pressurized water reactor Severe accident In-vessel melt retention Debris formationDebris remeltingMelt pool formationMelt pool thermal-hydraulicsCritical heat flux 反应堆容器 压水反应堆 熔融物 历史 滞留 反应堆压力容器 AP1000 堆芯熔化
  • 相关文献

参考文献1

二级参考文献7

  • 1Henry R E, Fauske H K. External cooling of a reactor vessel under severe accident conditions[J]. Nuclear Engineering and Design, 1993,139(1): 31-43. 被引量:1
  • 2Zhao G Z, Cao X R, Shi X W. Study theoretically on two-phase circulation flow characteristics under ERVCcondition in advance PWR[J]. Progress in Nuclear Energy, 2013, 67:104-113. 被引量:1
  • 3Theofanous T G, Syri S. The coolability limits of a reactor pressure vessel lower head[J]. Nuclear Engineering and Design, 1997, 169(1-3): 59-76. 被引量:1
  • 4Park R J, Ha K S, Kim S B, et al. Two-phase natural circulation flow of air and water in a reactor cavity model under a sever vessel accident[J]. Nuclear Engineering and Design, 2006, 236(23): 2424-2430. 被引量:1
  • 5Wang J R, Chang H J, Zheng W X, et al. In-vessel retention of molten core debris for CAP1400[C]. Presented at the 18th International Conference on Nuclear Engineering, Xi'an, China, 2010. 被引量:1
  • 6Inada F, Furuya M, Yasuo A. Thermo-hydraulic instability of boing natutal circulation loop induced by flashing[J]. Nuclear Engineering and Design, 1999, 200(2000): 187-199. 被引量:1
  • 7李飞,李永春,程旭.针对REPEC加热实验的RELAP5程序模拟与分析[J].原子能科学技术,2012,46(7):815-820. 被引量:6

共引文献3

同被引文献10

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部