摘要
为了解决轮毂电机电动汽车在低附路面上的横向操纵稳定性问题,并充分利用电机具有独立可控的优势,采用了上下双层控制器来控制车辆的横摆稳定性。上层控制器中,采用模糊控制理论得到准稳态车辆所需横摆力矩和纵向力,在下层控制器中,基于整车轮胎纵向力利用率最小为目标函数,采用加权最小二乘算法(WLS)将其得到的横摆力矩和纵向力进行轮间的优化分配。最后以70km/h车速,地面附着系数为0.3的工况下,在matlab/simulink中进行离线仿真分析。并与目前采用的平均分配方法进行了同工况下的比较。最后得出,采取轮间优化分配的方法,提高了轮毂电机电动汽车在低附路面上的横摆稳定性。
In order to solver the wheel motor electric vehicle lateral stability on the low adhesion road and use motor with independently controllable advantage,it takes a bunk controller to control vehicle yaw stability. In the upper controller,fuzzy control theory obtains the required quasi-stationary vehicle yaw moment required longitudinal force,in the lower controller,based on the utilization of the vehicle tire longitudinal force as the objective function,adoption weighted least squares algorithm(WLS) to optimize distribution the resulting yaw moment and longitudinal forces. At last,in the attachment coefficient of 0.3 conditions with speed of 70km/h,offline simulation in matlab/simulink,the current average allocation methods were compared with the same condition. It comes to the conclusion that it takes optimal allocation methods to improve the in-wheel motor electric vehicle yaw stability on the low load attached.
出处
《机械设计与制造》
北大核心
2016年第4期182-185,共4页
Machinery Design & Manufacture
基金
国家自然科学基金青年科学基金项目(51405051)
2013年重庆高校创新团队建设计划资助项目(KJTD201319)
关键词
电动汽车
横摆稳定性
优化分配
轮毂电机
Electric Vehicle
Yaw Moment
Optimal Distribution
In-Wheel-Motor