期刊文献+

基于手机APP大数据的交通出行数据获取方法 被引量:7

A Travel Data Collection Method Based on Big-data from a Smart Phone APP
下载PDF
导出
摘要 城市居民的交通出行是交通研究中的基础问题。结合当前手机应用的特点,以手机应用与无线通信网络数据交互时产生的CI(Cell-ID Identify)定位数据为研究对象来获取居民出行数据。采集了"易信"手机应用2013与2014年共3 241 238条有效的CI定位数据,并对其进行了降维、离散化、去噪预处理。提出将定位数据标准化为0-1数据矩阵,以矩阵运算的形式推导用户出行OD矩阵、各小区出入流量等二次数据的算法模型,并在Matlab中进行了实现。结果表明,相较于遍历数据的循环算法,推导效率有显著提升。提出了推导OD矩阵的完整性与真实性评价指标R,并计算得到2013的R为19.1%,2014为69.3%。发现手机应用日均数据量较大的CI数据具有更高的完整性与真实性(2013年为10.6条,2014年为47.4条),但该指标主要反映所有小区中存在交通出行的整体情况,对各小区的出行行为的完整性与真实性尚需做进一步研究。 travel of Urban residents is one of the fundamental questions in transportation research.According to the characteristics of the current mobile phone application,this paper focuses on extracting residents' travel data from CI(Cell-ID Identify)location data generated during the interaction between mobile phone application and wireless communication network.A total of 3 241 238 CI positioning data in 2013 and 2014 has been collected from " Yi Xin" App,which is then preprocessed through dimensionality reduction,discretization and de-noising.This paper develops an efficient matrix operation algorithm to extract origin/destination information and inbound and outbound traffic flow data of each residential area based on the conversion of CI positioning data into standardized 0-1 matrices.Matlab is used to implement this algorithm.The results show that,comparing to circulation algorithm of data traversal search,this algorithm can achieve a higher efficiency which shorten the time from days to minutes.An index Rhas been presented to evaluate the integrity and authenticity of the derivate users′OD matrices.The index Rof OD matrices is 19.1% in 2013,and 69.3% in 2014.The results indicate that the CI positioning data with higher daily data amount(10.6 in 2013 and 47.4 in 2014)has higher integrity and authenticity.However,this index only reflects the overall condition of trips from all residential areas,and the fact if this index can fully and truthfully represent travel behavior of each individual traffic analysis zone should be further studied.
出处 《交通信息与安全》 2015年第6期40-47,共8页 Journal of Transport Information and Safety
基金 上海市科委2014年度联盟能力提升建设项目(批准号:14DZ0511300) 国家自然科学基金项目(批准号:61074139)资助
关键词 交通大数据 交通出行 交通OD数据 移动定位数据 CI移动定位技术 手机应用 traffic big data traffic trips traffic OD data mobile positioning technology CI-based mobile localization technology mobile phone application
  • 相关文献

参考文献14

  • 1王涛.英特尔开放平台构建大数据生态圈[EB/OL].httphttp://server.zdnet.com.cn/server/2012/1211/2135509.shtml.2012-12-11/2013-4-20. 被引量:2
  • 2杨飞.基于手机定位的交通OD数据获取技术[J].系统工程,2007,25(1):42-48. 被引量:49
  • 3MAJ, LI H, YUAN F, et al. Deriving operational origin-destination matrices from large scale mobile phone data[J]. International Journal of Transporta- tion Science ~ Technology, 2013, 2(3)~183-204. 被引量:1
  • 4WANG M H, SCHROCK S D, BROEK N V, et al. Estimating dynamic origin-destination data and travel demand using cell phone network data[J]. In- ternational Journal of Intelligent Transportation Systems Research, 2013, 11(2) 176-86. 被引量:1
  • 5邹亮,张孜,朱玲湘.基于手机定位的公交OD获取方法研究[J].交通信息与安全,2011,29(5):122-126. 被引量:4
  • 6AHAS R, AASA A, SILM S, et al. Daily rhythms of suburban commuter's movements in the Tallinn metropolitan area: case study with mobile positio- ning data[,J]. Transportation Research Part C.. E- merging Technologies, 2010, 18 (1) : 45-54. 被引量:1
  • 7KYAMAKYA K, FUCHS S. Road traffic tracking by using location management data in wireless cellu- lar networks (TTLM) I-J]. ITG-Fachbericht, 2006,194 : 101-107. 被引量:1
  • 8ZHANG Y, QIN X, DONG S, et al. Daily OD ma- trix estimation using cellular probe data[C~. Trans- portation Research Board 89'h Annual Meeting Washington D.C. : TRB, 2010. 被引量:1
  • 9吴健生,黄力,刘瑜,彭建,李卫锋,高松,康朝贵.基于手机基站数据的城市交通流量模拟[J].地理学报,2012,67(12):1657-1665. 被引量:34
  • 10IQBAL M S, CHOUDHURY C F, WANG P, et al. Development of origin-destination matrices u- sing mobile phone call data[J]. Transportation Re- search Part C Emerging Technologies, 2014, 40 (1) :63-74. 被引量:1

二级参考文献54

共引文献83

同被引文献63

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部