期刊文献+

基于局部敏感核稀疏表示的视频跟踪 被引量:5

Visual Tracking via Locality-sensitive Kernel Sparse Representation
下载PDF
导出
摘要 为了解决?1范数约束下的稀疏表示判别信息不足的问题,该文提出基于局部敏感核稀疏表示的视频目标跟踪算法。为了提高目标的线性可分性,首先将候选目标的SIFT特征通过高斯核函数映射到高维核空间,然后在高维核空间中求解局部敏感约束下的核稀疏表示,将核稀疏表示经过多尺度最大值池化得到候选目标的表示,最后将候选目标的表示代入在线的SVMs,选择分类器得分最大的候选目标作为目标的跟踪位置。实验结果表明,由于利用了核稀疏表示下数据的局部性信息,使得算法的鲁棒性得到一定程度的提高。 In order to solve the problem of lack of discriminability in the 1?-norm constraint sparse representation, visual tracking via locality-sensitive kernel sparse representation is proposed. To improve the linear discriminable power, the candidates' Scale-Invariant Feature Transform(SIFT) is mapped into high dimension kernel space using the Gaussian kernel function. The locality-sensitive kernel sparse representation is acquired in the kernel space. The candidates' representation are obtained after multi-scale maximum pooling. Finally, the candidates' representation is put into the classifier and the candidate with the biggest Support Vector Machines(SVMs) score is recognized as the target. And the experiments demonstrate that the robustness of the proposed algorithm is improved due to the use of the data locality under the kernel sparse representation.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第4期993-999,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61175029 61379104 61372167) 国家自然科学基金青年科学基金(61203268 61202339)~~
关键词 视频跟踪 核稀疏表示 局部敏感约束 支持向量机 Visual tracking Kernel sparse representation Locality-sensitive constraint Support Vector Machine(SVM)
  • 相关文献

参考文献17

  • 1WU Yi,LIM J,and YANG Minghsuan.Object tracking Benchmark[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(6):1442-1456. 被引量:1
  • 2WRIGHT J,MA Yi,MAIRAL J,et al.Sparse representation for computer vision and pattern recognition[J].Proceedings of the IEEE,2010,98(6):1031-1044. 被引量:1
  • 3MEI X and LING H.Robust visual tracking using L1 minimization[C].2009 IEEE 12th International Conference on Computer Vision,Kyoto,2009:1436-1443. 被引量:1
  • 4BAO Chenglong,WU Yi,LING Haibin,et al.Real time robust L1 tracker using accelerated proximal gradient approach[C].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,Providence,RI,USA,2012:1830-1837. 被引量:1
  • 5ZHONG Wei,LU Huchuan,and YANG Minghsuan.Robust object tracking via sparse collaborative appearance model[J].IEEE Transactions on Image Processing,2014,23(5):2356-2368. 被引量:1
  • 6WANG N and YEUNG D Y.Learning a deep compact image representation for visual tracking[C].Advances in Neural Information Processing Systems,Nevada,2013:809-817. 被引量:1
  • 7GAO Jin,LING Haibin,HU Weiming,et al.Transfer Learning Based Visual Tracking with Gaussian Processes Regression[M].Computer Vision-ECCV 2014,Zurich:Springer International Publishing,2014:188-203. 被引量:1
  • 8王瑞,杜林峰,孙督,万旺根.复杂场景下结合SIFT与核稀疏表示的交通目标分类识别[J].电子学报,2014,42(11):2129-2134. 被引量:9
  • 9YU K,ZHANG T,and GONG Y.Nonlinear learning using local coordinate coding[C].Advances in Neural Information Processing Systems.Vancouver,2009:2223-2231. 被引量:1
  • 10LI Feifei,FERGUS R,and PERONA P.Learning generative visual models from few training examples:An incremental bayesian approach tested on 101 object categories[J].Computer Vision and Image Understanding,2007,106(1):59-70. 被引量:1

二级参考文献23

  • 1Liu Zhoufeng, Liao Liang, Zhang Yanning. Image classification via nearest subspace and two-dimensional underdetermined ran- dom projection[ A]. Proceedings of 7th IEEE Conference on In- dustrial Electronics and Applications (IC1EA) [ C]. Singapore: IEEE, 2012.231 - 236. 被引量:1
  • 2Z Chen, N Pears, M Freeman, Austin J. Road vehicle classifica- tion using Support Vector Machines[ A ]. Proceedings of IEEEInternational Conference on Intelligent Computing and Intelli- gent Systems (ICIS) [ C] Shanghai: 1EEE, 2009.214 - 218. 被引量:1
  • 3M Duarte, Y Hu. Vehicle classification in distributed sensor networks[J]. Journal of Parallel and Distributed Computing, 2004,64(7) :826- 838. 被引量:1
  • 4DL Donoho. Compressed sensing[J]. IEEE Transaction on In- formation Theory,2006,52:1289 - 1306. 被引量:1
  • 5E Cand:s, M Wakin. An introduction to compressive sampfing [J]. IEEE Signal Processing Magazine, 2008,25(2) : 21 - 30. 被引量:1
  • 6J Wright, AY Yang, A Ganesh, et al. Robust face recognition via sparse representation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31 (2) :210 - 227. 被引量:1
  • 7X T Yuan, S Yan. Visual classification with multi-task joint sparse representation[ A]. Proceedings of IF_EE Conference on Computer Vision and Pattern Recognition (CVPR) [ C ]. San Francisco: IE.F.E, 2010. 3493 - 3500. 被引量:1
  • 8G Obozinski, B Taskar, MI Jordan. Joint covariate selection and joint subspace selection for multiple classification prob- lems[J ]. Journal of Statistics and Computing, 2010, 20 (2) : 231 - 252. 被引量:1
  • 9H Zhang,NM Nasrabadi, TS Huang,et al. Joint sparse repre- sentation based automatic target recognition in SAR images A] .Proceedings of Algorithms for Synthetic Aperture Radar Imagery XVIII[ C ]. Orlando: SPIE, 2011.1 - 12. 被引量:1
  • 10E Cand:s,M Wakin. An inlroduction to compressive sampling J]. IEEE Signal Processing Magazine, March 2008,25 (2) : 21 - 30. 被引量:1

共引文献8

同被引文献22

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部