期刊文献+

一种基于朴素贝叶斯分类的车道数量探测 被引量:13

Traffic Lane Numbers Detection Based on the Naive Bayesian Classification
原文传递
导出
摘要 针对浮动车数据采集成本低、采集速度快、覆盖范围广、蕴含丰富道路信息等特点,提出了一种基于浮动车数据的城市车道数量信息快速获取方法。该方法首先根据浮动车数据的空间分布特征,利用基于Delaunay三角网的密度聚类方法对数据进行优选;然后通过探测浮动车数据的覆盖宽度及其在道路横截面的分布状态,构建朴素贝叶斯分类器;最后采用朴素贝叶斯分类方法确定目标路段的车道数量。结果表明:该方法可以从低精度浮动车数据中快速获取车道数量信息,提取精度达到76.3%。 Aiming at characteristics of low cost,rapid collection speed,wide coverage and massive traffic information in collecting floating car data(FCD),a rapid method to obtain urban lane number information based on FCD was proposed.Firstly,the density clustering method based on Delaunay triangulation network was used to choose the optimum data considering the spatial distribution characteristics of FCD.Then the naive Bayesian classifier was built through detecting the covered width of FCD and its distribution state on the transectbased road.Finally,the naive Bayesian classification was used to determine lane numbers in target road segments.The results show that this method can be used to obtain lane number information rapidly from FCD with low precision and the accuracy of lane number extraction is76.3%.
出处 《中国公路学报》 EI CAS CSCD 北大核心 2016年第3期116-123,共8页 China Journal of Highway and Transport
基金 国家自然科学基金项目(41271442 40801155 41571430) 深圳市北斗卫星应用工程技术研究中心项目 中国航天科技集团公司卫星应用研究院创新基金项目(2014_CXJJ-DSJ_02)
关键词 交通工程 浮动车数据 自适应宽度探测 朴素贝叶斯分类 车道数量 traffic engineering FCD adaptive width detection naive Bayesian classification lane number
  • 相关文献

参考文献17

二级参考文献103

  • 1史文中,李必军,李清泉.基于投影点密度的车载激光扫描距离图像分割方法[J].测绘学报,2005,34(2):95-100. 被引量:89
  • 2郑年波,李清泉,徐敬海,宋莺.基于转向限制和延误的双向启发式最短路径算法[J].武汉大学学报(信息科学版),2006,31(3):256-259. 被引量:32
  • 3章威,徐建闽,林绵峰.基于大规模浮动车数据的地图匹配算法[J].交通运输系统工程与信息,2007,7(2):39-45. 被引量:35
  • 4Kastrinaki V, Zervakis M, Kalaitzakis K. A survey of video processing techniques for traffic applications[J]. Image and Vision Computing,2003,21(1) :359. 被引量:1
  • 5Betke M,Haritaoglu E, Davis L S. Real-time multiple vehicle detection and tracking from a moving vehicle[J]. Machine Vision and Applications, 2000,12 ( 2 ) : 69. 被引量:1
  • 6Zhang J,Nagel H. Texture-based segmentation of road images [C] // Proceedings of IEEE, Symposium on Intelligent Vehicles. Piscataway: IEEE Press, 1994: 260 - 265. 被引量:1
  • 7Bertozzi M, Broggi A. GOLD.. a parallel real - time stereo vision system for generic obstacle and lane detection[J]. IEEE Transaction Image Processing, 1998,7(1 ) : 62. 被引量:1
  • 8Kreucher C, Lakshmanan S. LANA:a lane extraction algorithm that uses frequency domain features[J]. IEEE Transactions on Robotics and Automation, 1999,15 (2) : 343. 被引量:1
  • 9Ma B, Lakshmanan S, Hero A O. Simultaneous detection of lane and pavement boundaries using model-based multi-sensor fusion [J ]. IEEE Transaction Intelligent Transportation System, 2000,1 (2) : 135. 被引量:1
  • 10Southall B, Taylor C J. Stochastic road shape estimation[C]// Proc Int Conf Computer Vision,Vancouver: IEEE Press,2001 : 205 - 212. 被引量:1

共引文献226

同被引文献178

引证文献13

二级引证文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部