期刊文献+

RSA体系中不动点的研究

Research of the Fixed Points of the RSA System
下载PDF
导出
摘要 通过取模的几个性质对RSA,加密体系不动点进行了试解。对解的分析可知,如果d=eλ(λ为正整数),则RSA(n,e,d)存在无穷多个与明文无关的α阶不动点,且λ<loge n,使得d很容易在λ步内被猜测出,因此建议RSA(n,e,d)要对e和d的关系进行进一步的约束,只需要检验d%e>0。而讨论不动点解的个数或者出现的概率,也要从n、e、d出发,才能找到利用不动点从n、e推导出d的重大安全漏洞。 This article tries to solve the fixed points of RSA-ciphering system by several properties of modulo.Based on the analy.sis against this solution,it shows that there are infinitely many α-order fixed points which are message-free of RSA(n,e,d) as long as d = eλ(λ is a positive integer),and it means that d can be guessed out in λ times(λ〈loge n).So it is recommended tha RSA(n,e,d) should impose further constraint on the relation between e and d by simply testing d%e〉0 or not.The discussior about the amount of the solutions and the probability for them to appear should also start from n,e and d,to find the importan security vulnerability which searched d from n and e by the fixed-point.
出处 《信息通信》 2016年第3期31-33,共3页 Information & Communications
基金 科技支撑计划(2015BAK20B03)
关键词 RSA加密体系 α阶不动点 与明文无关 RSA-ciphering system α-order fixed points message-free
  • 相关文献

参考文献9

  • 1T.M.Apostol,Introduction to Analytic Number Theory[J].in:Undergraduate Texts in Mathematics,Springer,1976. 被引量:1
  • 2R.L.Rivest,A.Shamir,L.Adleman,A method for obtaining digital signatures and public key cryptosystems[J].Communications of the ACM,1978,21:120-126. 被引量:1
  • 3D.R.Smith,J.T.Palmer,Universal fixed messages and the Rivest Shamir Adleman cryptosystem[J].Mathematika,1979,26:44-52. 被引量:1
  • 4于秀源.关于RSA加密方法不动点的注记[J].计算机学报,2001,24(9):998-1001. 被引量:3
  • 5于秀源.关于RSA不动点的注记(Ⅱ)[J].计算机学报,2002,25(5):497-501. 被引量:5
  • 6A.Chmielowiec,Fixed points of the RSA encryption algorithm[J].Theoretical Computer Science,2010,411:288-292. 被引量:1
  • 7Chae Hoon Lim,A note on the average number of RSA fixed points[J],Theoretical Computer Science,2011,412:4729-4737. 被引量:1
  • 8彭艳兵,一种加速RSA加解密的算法[P],发明专利,200910183106.9. 被引量:1
  • 9G.J.O.Jameson,The Prime Number Theorem[B].Cambridge University Press,2003. 被引量:1

二级参考文献8

  • 1潘承洞 潘承彪.解析数论基础[M].北京:科学出版社,1997.98-101. 被引量:7
  • 2[1]Koblitz N. A Course in Number Theory and Cryptography. New York: Springer-Verlag, 1987 被引量:1
  • 3[2]Tilborg H. An Introduction to Cryptology. Boston: Kluwer, 1987 被引量:1
  • 4[3]Lramalos E. Primality and Cryptography. New York: John Wiley & Sons, 1986 被引量:1
  • 5[4]Hardy G H, Wright E M. An Introduction to the Theory of Number Theory. Oxford, 1981 被引量:1
  • 6van Tilborg H. An Introduction to Cryptography. Boston: Kluwer Academic Publishers,1987 被引量:1
  • 7Hardy G H, Wright E M. An Introduction to the Theory of Numbers. 5th ed. Oxford: Oxford Press, 1981 被引量:1
  • 8徐秋亮.改进门限RSA数字签名体制[J].计算机学报,2000,23(5):449-453. 被引量:63

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部