期刊文献+

内嵌金属富勒烯Sc_2S@C_(86)的结构和性质 被引量:3

Structures and Properties of Endohedral Metallofullerene Sc_2S@C_(86)
下载PDF
导出
摘要 金属硫化物富勒烯是一类结构新奇的化合物,阐释其结构和性质是当前的重要研究任务。本文采用密度泛函理论(DFT)方法,系统研究了质谱实验已经检测到的内嵌金属富勒烯Sc_2S@C_(86)的结构和性质。结果显示,能量最低的异构体是Sc_2S@C_(86):63751(独立五元环规则(IPR)-9),该碳笼与已报道的Sc2C2@C86的碳笼一样;其次是non-IPR Sc_2S@C_(86):63376。自然键轨道(NBO)和分子中原子理论(AIM)分析显示,内嵌团簇与碳笼间存在电荷转移相互作用和共价作用。温度效应计算显示,高温时Sc_2S@C_(86)是多个异构体共存的。为了对将来实验结构测定提供参考,本文提供了能量最低的两个异构体的红外光谱图。 Metallic sulfide fullerenes are compounds with novel structures. Currently, it is an important task to clarify the structures and properties of metallic sulfide fullerenes. A systematic study is performed on Sc2S@C86by the density functional theory(DFT) method. The calculated results show that the lowest-energy isomer is IPR-satisfying Sc2S@C86:63751(the 9th isomer of C86 in the isolated pentagon rule(IPR)-only sequence), sharing the same cage with Sc2C2@C86. The second lowest energy isomer is not an isolated-pentagon-rule(non-IPR)Sc2S@C86:63376. Natural bond orbit(NBO) and theory of atoms in molecules(AIM) analyses show that there are charge transfer and covalent interactions between the encaged cluster and parent cage. The effect of temperature on the concentration is evaluated and the results show that several isomers of Sc2S@C86may coexist at the high temperature conditions used for producing metallofullerenes. The IR spectra of the two lowest energy isomers are provided to help experimentally identify the structure of Sc2S@C86in the future.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2016年第4期929-934,共6页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(51272216) 中央高校基金(XDJK2014B032)资助项目~~
关键词 金属富勒烯 结构 性质 电荷转移 密度泛函理论 Metallofullerene Structure Property Charge transfer Density functional theory
  • 相关文献

参考文献2

二级参考文献44

  • 1Popov, A. A.; Yang, S. Chem. Rev. 2013, 113, 5989. 被引量:1
  • 2Akasaka, T.; Nagase, S. Endofullerenes: A New Family of Carbon Clusters, Kluwer Academic, Dordrecht, 2002, pp. 1~11. 被引量:1
  • 3Chaur, M. N.; Melin, F.; Ortiz, A. L.; Echegoyen, L. Angew. Chem., Int. Ed. 2009, 48, 7514. 被引量:1
  • 4Akasaka, T.; Wudl, F.; Nagase, S. Chemistry of Nanocarbons, Wiley, New York, 2010, pp. 2~3. 被引量:1
  • 5Chai, Y.; Guo, T.; Jin, C.; Haufler, R. E.; Chibante, L. P. F.; Fure, J.; Wang, L.; Alford, J. M. J. Phys. Chem. 1991, 95, 7564. 被引量:1
  • 6Lu, X.; Slanina, Z.; Akasaka, T.; Tsuchiya, T.; Mizorogi, N.; Nagase, S. J. Am. Chem. Soc. 2010, 132, 5896. 被引量:1
  • 7(a) Cao, B.; Nikawa, H.; Nakahodo, T.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Sawa, H.; Slanina, Z.; Mizorogi, N.; Nagase, S. J. Am. Chem. Soc. 2008, 130, 983. 被引量:1
  • 8Kurihara, H.; Lu, X.; Iiduka, Y.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Nagase, S.; Akasaka, T. Chem. Commun. 2012, 48, 1290. 被引量:1
  • 9(a) Krause, M.; Dunsch, L. ChemPhysChem 2004, 5, 1445. 被引量:1
  • 10Wang, T.-S.; Chen, N.; Xiang, J.-F.; Li, B.; Wu, J.-F.; Xu, W.; Jiang, L.; Tan, K.; Shu, C.-Y.; Wang, C.-R. J. Am. Chem. Soc. 2009, 131, 16646. 被引量:1

共引文献3

同被引文献6

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部