期刊文献+

Dynamic bivariate normal copula 被引量:3

Dynamic bivariate normal copula
原文传递
导出
摘要 Normal copula with a correlation coefficient between-1 and 1 is tail independent and so it severely underestimates extreme probabilities. By letting the correlation coefficient in a normal copula depend on the sample size, H¨usler and Reiss(1989) showed that the tail can become asymptotically dependent. We extend this result by deriving the limit of the normalized maximum of n independent observations, where the i-th observation follows from a normal copula with its correlation coefficient being either a parametric or a nonparametric function of i/n. Furthermore, both parametric and nonparametric inference for this unknown function are studied, which can be employed to test the condition by H¨usler and Reiss(1989). A simulation study and real data analysis are presented too. Normal copula with a correlation coefficient between-1 and 1 is tail independent and so it severely underestimates extreme probabilities. By letting the correlation coefficient in a normal copula depend on the sample size, H¨usler and Reiss(1989) showed that the tail can become asymptotically dependent. We extend this result by deriving the limit of the normalized maximum of n independent observations, where the i-th observation follows from a normal copula with its correlation coefficient being either a parametric or a nonparametric function of i/n. Furthermore, both parametric and nonparametric inference for this unknown function are studied, which can be employed to test the condition by H¨usler and Reiss(1989). A simulation study and real data analysis are presented too.
出处 《Science China Mathematics》 SCIE CSCD 2016年第5期955-976,共22页 中国科学:数学(英文版)
基金 supported by the Simons Foundation National Natural Science Foundation of China(Grant No.11171275) the Natural Science Foundation Project of CQ(Grant No.cstc2012jj A00029)
关键词 estimation normal copula tail dependence/independence Copula 正态 动态变量 相关系数 样本大小 独立观测 参数函数 未知函数
  • 相关文献

参考文献18

  • 1Benth F E, Kettler P C. Dynamic copula models for the spark spread. Quant Finance, 2011, 11:407-421. 被引量:1
  • 2Channouf N, L'Ecuyer P. A normal copula model for the arrival process in a call center. Int Trans Oper Res, 2012, 19:771 787. 被引量:1
  • 3Fan J, Gijbels I. Local Polynomial Modelling and Its Applications. New York: Chapman & Hall, 1996. 被引量:1
  • 4Frick M, Reiss R-D. Expansions and penultimate distributions of maxima of bivariate normal random vectors. Statist Probab Lett, 2013, 83:2563-2568. 被引量:1
  • 5Fung T, Seneta E. The bivariate normal copula function is regularly varying. Statist Probab Lett, 2011, 81:1670-1676. 被引量:1
  • 6Cu~gan D, Zhang J. Change analysis of a dynamic copula for measuring dependence in multivariate financial data. Quant Finance, 2010, 10:421 430. 被引量:1
  • 7Hall P, Heyde C C. Martingale Limit Theory and Its Application. New York: Academic Press, 1980. 被引量:1
  • 8Hashorva E. Elliptical triangular arrays in the max-domain of attraction of Hiisler-Reiss distribution. Statist Probab Lett, 2005, 72:125-135. 被引量:1
  • 9Hashorva E. On the multivariate Hiisler-Reiss distribution attracting the maxima of elliptical triangular arrays. Statist Probab Lett, 2006, 76:2027-2035. 被引量:1
  • 10Hiisler J, Reiss R-D. Maxima of normal random vectors: Between independence and complete dependence. Statist Probab Lett, 1989, 7:283-286. 被引量:1

同被引文献10

  • 1HUSLER J, REISS R D. Maxima of Normal Random Vectors; Between Independence and Complete Dependence [J].Stat Probab Lett, 1989 , 7(4) : 283 - 286. 被引量:1
  • 2HASHORVA E,WENG Z. Limit Laws for Extremes of Dependent Stationary Gaussian Arrays [J]. Statist Probab Lett,2013,83(83) : 320-330. 被引量:1
  • 3LIAO X,PENG Z. Asymptotics for the Maxima and Minima of Hiisler-Reiss Bivariate Gaussian Arrays [J]. Extremes,2014,18(1): 1-14. 被引量:1
  • 4HASHORVA E,PENG Z,WENG Z. Higher-Order Expansions of Distribution of Maxima in a Hiisler-Reiss Model [J].Methodol Comput Appl Probab, 2016,18(1) : 181 - 196. 被引量:1
  • 5HASHORVA E. Elliptical Triangular Arrays in the Max-Domain of Attraction of Hiisler-Reiss Distribution [J]. StatProbab Lett, 2005,72(2) : 125 - 135. 被引量:1
  • 6HASHORVA E. On the Max-Domain of Attractions of Bivariate Elliptical Arrays [J]. Extremes, 2006,8(3):225-233. 被引量:1
  • 7LIAO X, PENG Z. Convergence Rate of Maxima of Bivariate Gaussian Arrays to the Hlisler-Reiss Distribution [J]. Sta-tistics and Its Interface, 2014, 7(3) : 351 - 362. 被引量:1
  • 8FRICK M, REISS R D. Expansions and Penultimate Distributions of Maxima of Bivariate Normal Random Vectors [J].Statist Probab Lett, 2013,83(11) : 2563 - 2568. 被引量:1
  • 9杨红艳,彭作祥.有限混合偏正态极值的极限分布[J].西南大学学报(自然科学版),2014,36(3):59-62. 被引量:5
  • 10章毓波,彭作祥.t分布的极值分布渐近展开[J].西南大学学报(自然科学版),2014,36(3):67-70. 被引量:7

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部