期刊文献+

Hilbert空间中均衡问题与拟非扩张映像不动点的强收敛定理

A Strong Convergence Theorem for Equilibrium Problems and Fixed Points of Nonspreading Mappings in Hilbert Spaces
下载PDF
导出
摘要 本文在Hilbert空间中引入了一种新的粘滞迭代算法,用以逼近均衡问题解集与拟非扩张映像不动点集的公共元,证明了一个强收敛定理. In the present paper, a new iterative algorithm is proposed and a strong convergence theorem is proven for approximating a common element of solution set for equilibrium problems and fixed point set for quasi-nonexpansive mappings.
出处 《军械工程学院学报》 2016年第1期69-73,共5页 Journal of Ordnance Engineering College
关键词 均衡问题 拟非扩张映像 粘滞迭代方法 强收敛 equilibrium problems quasi-nonexpansive mappings viscosity approximationmethods strong convergence theorem
  • 相关文献

参考文献8

  • 1AGARWAL R P, O' Regan Donal, SAHU D R. Fixed point theory for Lipschizian-type mappings with applications [M]. New York: Springer-Verlag, 2008: 1-375. 被引量:1
  • 2KOHSAKA F, TAKAHASHI W.Fixed point theorems for class of nonlinear mappings related to maximal monotone operators in Banach spaces[J]. Arch. Math., 2008,91 (2) : 166-177. 被引量:1
  • 3MAINGEP E. Strong convergence of projected suhgradient methods for nonsmooth and nonstrictly convex minimization [J]. Set-valued Anal., 2008,16(6) : 899- 912. 被引量:1
  • 4MAINGEP E. The viscosity approximation process forquasi-nonexpansive mappings in Hilbert spaces [J]. C. M. A., 2010,59(1):74-79. 被引量:1
  • 5IEMOTOS S, TAKAHASHI W. Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space [J], Nonlinear Analysis: Theory, Methods & Applications, 2009,71 (3) :2082- 2089. 被引量:1
  • 6QIN X L. On the convergence of iterative processes for nonlinear operators [D]. Chinju; Gyeongsang National University, 2010. 被引量:1
  • 7周宇,刘元星,周海云.Hilbert空间中非伸展映像的不动点的粘滞迭代算法[J].数学的实践与认识,2011,41(24):222-226. 被引量:2
  • 8张东凯,周海云.Hilbert空间中闭的拟非扩张映像不动点的另一迭代算法[J].河北师范大学学报(自然科学版),2009,33(5):579-581. 被引量:7

二级参考文献12

  • 1ALBER Y I. Metric and Generalizd Projection Operators in Banach Spaces:Properties and Applications [ A]. KARTSATOS A G. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type [C]. New York: Marcel Dekker, 1996 : 15- 50. 被引量:1
  • 2ALBER Y I ,REICH S. An Iterative Method for Solving a Class of Nonlinear Operator Equations in Banaeh Spaces [J]. Pan Amer Math J ,1994,4(3) :39-54. 被引量:1
  • 3BAUSCHKE H H, COMBETTES P L. A Weak-to-strong Convergence Principle for Fej6r-monotone Methods in Hilbert Spaces [J]. Math Oper Rese,2001,26(3) :248-264. 被引量:1
  • 4CHANG S S, CHO Y J, ZHOU Hai-yun. Iterative Methods for Nonlinear Operator Equations in Banach Spaces [ M], New York: Nova Science Publishers, 2002. 被引量:1
  • 5NAKAJO K, TAKAHASHI W. Strong Convergence Theorems for Nonexpansive Mappings and Nonexpansive Semigroups [ J ]. J Math Anal Appl,2003,279(6) :372-379. 被引量:1
  • 6TAKAHASHI W. Nonlinear Functional Analysis [M]. Yokohama: Yokohama Publishers,2000. 被引量:1
  • 7Kohsaka F and Takahashi W. Fixed point theorems for class of nonlinear mappings related to maximal monotone operators in Banach spaces[J]. Arch. Math., 2008, 91: 166-177. 被引量:1
  • 8Mainge P E. The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces[J] C. M. A., 2010, 59: 74-79. 被引量:1
  • 9Agarwal R P, O'Regan Donal and Sahu D R. Fixed Point Theory for Lipschizian-Type Mappings with Applications[M]. Springer-Verlag, 2008. 被引量:1
  • 10Iemoto S, Takahashi W. Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71: 2082-2089. 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部