期刊文献+

可平面图的r-hued染色(英文)

On r-hued Coloring of Planar Graphs
下载PDF
导出
摘要 令k>0,r>0是两个整数.图G的一个r-hued染色是一个正常k-染色?使得每个度为d(v)的顶点v相邻至少min{d(v),r}个不同的颜色.图G的r-hued色数是使得G存在r-hued染色的最小整数k,记为χ_r(G).文章证明了,若G为不含i-圈,4≤i≤9,的可平面图,则χ_r(G)≤r+5.这一结果意味着对于无4-9圈的可平面图,r-hued染色猜想成立. Let k, r be integers with k〉 0 and r 〉0. An r-hued coloring of a graph G is a proper k-coloring ? such that for any vertex v with degree d(v), v is adjacent to at least min{d(v), r} different colors. The r-hued chromatic number of G, χ_r(G), is the least integer k such that an r-hued coloring of G exists. In this paper, we show that if G is a planar graph without i-cycles, 4 ≤ i ≤ 9, then χ_r(G) ≤ r + 5. This result implies that for a planar graph without 4-9 cycles, a conjecture on r-hued coloring of planar graphs holds.
出处 《应用数学》 CSCD 北大核心 2016年第2期308-313,共6页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(61170302)
关键词 r-hued染色 可平面图 Wagner猜想 r-hued coloring Planar graph Cycles Wagner's conjecture
  • 相关文献

参考文献6

  • 1Montgomery B. Dynamic Coloring of Graphs[D]. Morgantown: West Virginia University, 2001. 被引量:1
  • 2LAI Hongjian, Montgomery B, Poon H. Upper bounds of dynamic chromatic number [J]. Ars Com- binatorial, 2003, 68:193-201. 被引量:1
  • 3FAN Suohai, LIN Jianliang, LAI Hongjian, Montgomery B, TAO Zhishui. Conditional colorings of graphs [J]. Discrete Mathematics, 2006,306:1997-2004. 被引量:1
  • 4CHEN Ye, FAN Suohai, LAI Hongjian, SONG Huimin, SUN Lei. On dynamic coloring for planar graphs and graphs of higher genus [J]. Discrete Applied Mathematics, 2012,160:1064-1071. 被引量:1
  • 5Wegner G. Graphs with given diameter and a coloring problem [R]. Dortmund: University of Dort- mund, 1977. 被引量:1
  • 6SONG Huimin, FAN Suohai, CHEN Ye, SUN Lei, LAI Hongjian. On r-hued coloring of K4-minor free graphs [J]. Discrete Mathematics, 2014,315-316:47-52. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部