期刊文献+

基于帝国主义竞争算法的结构模态参数识别

Structural modal parameter identification based on imperialist competitive algorithm
下载PDF
导出
摘要 结构模态参数(包括频率、振型和阻尼)识别,是结构健康监测与结构状态评估的核心内容。帝国主义竞争算法(ICA)作为一种新颖的智能算法,已成功应用于许多复杂的优化问题中。ICA识别结构模态参数的实质是通过最小化包括所要识别的模态参数的结构输出理论公式和结构现场输出之差,将结构模态参数识别问题转化成优化问题。最后采用一个三层框架和一个简支梁数值模型对该方法进行验证。结果表明,帝国主义竞争算法可以有效识别结构模态参数,且识别精度较高。 Structural modal parameters identification (including the identification of structural modal shape, frequency and damping ratio) is the key point in the structural health monitoring and structural condition assessment. Imperialist Competitive Algorithm (ICA), as a novel intelligent algorithm, has been successfully applied in many complex optimization issues. The essence of structural modal parameter identification by ICA is to transform the structural modal parameter identification into optimization through minimizing the error between theoretical equation of structural outputs (including structural modal parameters to be identified) and structural output data. Finally, a numerical model of three-story frame is adopted to verify the efficiency of the method herein. The results show that ICA can effectively identify structural modal parameters with high accuracy.
出处 《苏州科技学院学报(工程技术版)》 CAS 2016年第1期20-26,共7页 Journal of Suzhou University of Science and Technology (Engineering and Technology)
基金 江苏省自然科学基金项目(BK20141180) 江苏省结构工程重点实验室开放课题(Z1405) 江苏省建设系统科技项目(2015ZD77)
关键词 帝国主义竞争算法 结构模态参数识别 环境激励 imperialist competitive algorithm structural modal parameter identification ambient excitation
  • 相关文献

参考文献12

二级参考文献22

  • 1段志平,张亚.结构阻尼识别的方法及比较[J].福州大学学报(自然科学版),2005,33(z1):208-212. 被引量:10
  • 2丁康,何志达,孔正国.基于离散频谱分析的自由衰减振动信号的幅值恢复[J].振动工程学报,2005,18(2):172-178. 被引量:5
  • 3应怀樵,刘进明,沈松.半功率带宽法与INV阻尼计法求阻尼比的研究[J].噪声与振动控制,2006,26(2):4-6. 被引量:55
  • 4Yang J,Pan S,Lin S.Least-squares estimation with unknown excitations for damage identification of structures[J].J Eng Mech,2007,133(1):12-21. 被引量:1
  • 5Campillo F,Mevel L.Recursive maximum likelihood estimation for structural health monitoring:tangent filter implementations[C] ∥Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC'05),Seville,Spain:IEEE press,2005:5923-5928. 被引量:1
  • 6Yang J,Lin S,Huang H,et al.An adaptive extended Kalman filter for structural damage identification[J].Struct Control Health Monitor,2005,13(4):849-867. 被引量:1
  • 7Perry M J,Koh C G,Choo Y S.Modified genetic algorithm strategy for structural identification[J].Computers & Structures,2006,84(8-9):529-540. 被引量:1
  • 8Koh C G,Hong B,Liaw C Y.Substructural system identification by genetic algorithms[C].3rd US-Japan Workshop on Nonlinear System Identification and Structural Health Monitoring,Los Angeles (CA),2000. 被引量:1
  • 9Tang H,Xue S.Differential evolution strategy for structural system identification[J].Computer and Structures,2008,86(21-22):2004-2012. 被引量:1
  • 10Eberhart R C,Kennedy J.A new optimizer using particle swarm theory[C] ∥Proceedings of the 6th International Symposium on Micro Machine & Human Science.NY,USA:IEEE,1995:39-43. 被引量:1

共引文献181

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部