期刊文献+

基于遗传算法的覆盖率驱动测试产生器 被引量:1

Coverage directed test generation based on genetic algorithm
下载PDF
导出
摘要 为了更好地建立覆盖率和测试产生器之间的联系,产生高质量的测试,提出基于遗传算法的覆盖率驱动测试产生器.该测试产生器利用一种简单、准确的测试编码方法对测试进行编码,并利用基于功能覆盖率的适应度函数评估测试的优劣.通过遗传算法(GA)建立覆盖率与测试产生器之间的联系,分析覆盖率和测试之间的关系,根据分析结果改变测试产生器的约束和限制,驱动测试产生器生成新一代的测试,新一代的测试可以覆盖到上一代的测试无法覆盖的功能点.实验结果表明:在2个高性能的32位多核处理器的验证环境中,该测试产生器可以明显减少仿真时间,提高验证效率. Coverage directed test generation based on genetic algorithm(GA)was proposed to close the loop between coverage analysis and test generation and produce the tests of good quality.A simple and accurate test encoding method was proposed.A fitness function based on functional coverage was used to evaluate the quality of tests.GA was used to close the loop between coverage analysis and test generation.The coverage results were evaluated and the constraints for test generation were modified to direct the test generation to produce the new tests,which can cover the functions that the old tests can't cover.The experiments were conducted based on the simulation environment for verifying two high-performance 32-bit multi-core processors.Results show that the proposed method can significantly reduce simulation time and improve verification efficiency.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第3期580-588,共9页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(61100074) 核高基国家科技重大专项资助项目(2012ZX01039-004) 中央高校基础研究基金资助项目(2013QNA5008)
关键词 覆盖率 测试产生器 遗传算法(GA) 覆盖率驱动测试产生器 适应度函数 coverage test generation genetic algorithm(GA) coverage directed test generation fitness function
  • 相关文献

参考文献25

  • 1WANGS,HUANG K,XIE T,et al. Hybrid model: anefficient symmetric multiprocessor reference model [J].Journal of Electrical and Computer Engineering, 2015,2015:23. 被引量:1
  • 2FINE S,ZIV A. Coverage directed test generation forfunctional verification using Bayesian networks [C] //Proceeding of the 40th Annual Design Automation Confer-ence. New York: IEEE,2003 : 286 - 291. 被引量:1
  • 3BRAUN M,FINE S,ZIV A. Enhancing the efficiencyof Bayesian network based coverage directed test genera-tion [C] // Proceeding of IEEE International Workshopon High-Level Design Validation and Test. New York:IEEE, 2004: 75 -80. 被引量:1
  • 4FINE S,FREUND A, JAEGER I,et al. Harnessingmachine learning to improve the success rate of stimuligeneration [J]. IEEE Transaction on Computers? 2006,55(11): 1344 - 1355. 被引量:1
  • 5BARAS I),FINE S, FOURNIER L,et al. Automaticboosting of cross-product coverage using Bayesian net-works [J]. International Journal on Software Tools forTechnology Transfer, 2011, 13(3): 247 - 261. 被引量:1
  • 6WAGBER I,BERTACCO V, AUSTIN T. StressTest:an automatic approach to test generation via activity mo-nitors [C]// Proceeding of the 42nd annual Design Auto-mation Conference. New York: ACM, 2005 : 783 - 788. 被引量:1
  • 7WAGBER I,BERTACCO V,AUSTIN T. Microprocessorverification via feedback-adjusted Markov models [J]. IEEETransactions on Compute卜 Aided Design of Integrated Circuitsand Systems, 2007, 26(6): 1126 - 1138. 被引量:1
  • 8EDER K, FLACH P,HSUEH H W. Towards automa-ting simulation-based design verification using ILP[C]// Proceeding of the 16th International Conference,ILP 2006. Berlin: Springer Press. 2007 : 154 - 168. 被引量:1
  • 9IOANNIDES C,EDER K I. Coverage directed test gen-eration automated by machine learning-a review [j].ACM Transactions on Design Automation of ElectronicSystems (TODAES), 2012, 17(1) : 1-23. 被引量:1
  • 10马永杰,云文霞.遗传算法研究进展[J].计算机应用研究,2012,29(4):1201-1206. 被引量:426

二级参考文献87

共引文献449

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部