期刊文献+

基于粒子群的加权朴素贝叶斯入侵检测模型 被引量:7

Intrusion detection model of Weighted Navie Bayes based on Particle Swarm Optimization algorithm
下载PDF
导出
摘要 针对传统朴素贝叶斯算法对高维复杂的入侵行为检测效率低下的状况,提出一种基于粒子群的加权朴素贝叶斯入侵检测模型。模型首先用粗糙集理论对样本属性特征集进行约简,再利用改进的粒子群算法优化加权朴素贝叶斯算法的属性权值,获得属性权值的最优解,用获得的最优解构造贝叶斯分类器完成检测。其中,改进的粒子群是采用权衡因子方法更新其速度和位置公式,避免产生局部最优。两种算法的结合,既能解决传统朴素贝叶斯算法的特征项冗余问题,同时也可以优化特征项间的强独立性问题。通过实验证实了该模型的实效性,提高了检测率。 Traditional Navie Bayes algorithm exists the issues of low inefficiency for the high dimensional and complex intrusion detection. In order to solve this problem, a detection model based on Weighted Naive Bayes which has been optimized by Particle Swarm Optimization algorithm is proposed. Firstly, the model reduces the dimension of the data samples using rough set theory. Secondly, the improved Particle Swarm Optimization algorithm searches the best attribute weights of Weighted Naive Bayes. Finally, Navie Bayes classifier is structured with the best attribute weights to complete detection. Among them, the improved Particle Swarm Optimization algorithm is using the weighting factor to update its position and velocity formula so as to avoid local optimal. The combination of the two algorithms can not only solve the feature redundancy problem of the traditional Navie Bayes algorithm, but also can optimize the strong independence between features. Through the experiments, the model is effective, and the detection rate is improved.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第7期122-126,共5页 Computer Engineering and Applications
关键词 入侵检测 粗糙集理论 加权朴素贝叶斯 粒子群优化算法 intrusion detection rough sets theory Weighted Naive Bayes Particle Swarm Optimization algorithm
  • 相关文献

参考文献13

  • 1Krontiris I,Benenson Z,Giannetsos T,et al.Cooperative intrusion detection in wireless sensor networks[C]//LNCS 5432:Proceedings of EWSN 2009,2009:263-278. 被引量:1
  • 2Lee W,Stolfo S J,Chan P K.Real time data miningbased intrusion detection[C]//Proceedings of the DARPA Information Survivability Conference and Exposition II(DISCEXII).Anaheim,CA:IEEE Computer Society,2001:85-100. 被引量:1
  • 3Patcha A,Park J.An overview of anomaly detection techniques:existing solutions and latest technological trends[J].Compute Networks,2007,51(12):3448-3470. 被引量:1
  • 4HAN J W,KAMBER M.数据挖掘概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2000. 被引量:1
  • 5Harry Z,Sheng S L.Learning Weighted Naive Bayes with accurate ranking[C]//Proceedings of the 4th IEEE International Conference on Data Mining(ICDM 04),Brighton,UK,2004:567-570. 被引量:1
  • 6何慧,苏一丹,覃华.基于信息增益的贝叶斯入侵检测模型优化的研究[J].计算机工程与科学,2006,28(6):38-40. 被引量:9
  • 7贾娴,刘培玉,公伟.基于改进属性加权的朴素贝叶斯入侵取证研究[J].计算机工程与应用,2013,49(7):81-84. 被引量:7
  • 8刘其琛,施荣华,王国才,穆炜炜.基于粗糙集与改进LSSVM的入侵检测算法研究[J].计算机工程与应用,2014,50(2):99-102. 被引量:7
  • 9Pawlak Z.Rough sets[J].International Journal of Parallel Programming,1982,11(5):341-356. 被引量:1
  • 10周喜..基于粗糙集的加权朴素贝叶斯分类算法研究[D].长沙理工大学,2013:

二级参考文献36

共引文献26

同被引文献42

引证文献7

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部