期刊文献+

Generalised Error Functions from the Kerr Metric

Generalised Error Functions from the Kerr Metric
下载PDF
导出
摘要 Motivated by the effort to understand the mathematical structure underlying the Teukolsky equations in a Kerr metric background, a homogeneous integral equation related to the prolate spheroidal function is studied. From the consideration of the Fredholm determinant of the integral equation, a family of generalized error function is defined, with which the Fredholm determinant of the sinc kernel is also evaluated. An analytic solution of a special ease of the fifth Painlev~ transcendent is then worked out explicitly. Motivated by the effort to understand the mathematical structure underlying the Teukolsky equations in a Kerr metric background, a homogeneous integral equation related to the prolate spheroidal function is studied. From the consideration of the Fredholm determinant of the integral equation, a family of generalized error function is defined, with which the Fredholm determinant of the sinc kernel is also evaluated. An analytic solution of a special ease of the fifth Painlev~ transcendent is then worked out explicitly.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第3期12-16,共5页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 11171329,11203003 and 11373013
  • 相关文献

参考文献13

  • 1Teukolsky S A 1973 Astrophys. J. 185 635. 被引量:1
  • 2Kerr R P 1963 Phys. Rev. Lett. 11 237. 被引量:1
  • 3Chandrasekhar S 1983 Math. Theory Black Holes 1st edn (Oxford: Clarendon Press). 被引量:1
  • 4Leaver E W 1986 J. Math. Phys. 27 1238. 被引量:1
  • 5Finster F, Kamran N, Smoller J and Yau S T 2006 Com- mun. Math. Phys. 264 465. 被引量:1
  • 6Li L W, Kang X K and Leong M S 2004 Spheroidal Wave Functions in Electromagnetic Theory (New York: John Wiley & Sons). 被引量:1
  • 7Simons F J 2010 Slepian Functions and Their Use in Sig- nal Estimation and Spectral Analysis (Berlin: Springer) p 891. 被引量:1
  • 8Thompson W J 1999 Spheroidal Wave Functions, Comput- ing in Science Engineering p 84. 被引量:1
  • 9Madan L M 2006 Random Matrices (Beijing: Beijing World Publishing Corporation). 被引量:1
  • 10Tian G H 2005 Chin. Phys. Lett. 22 3013. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部