摘要
Motivated by the effort to understand the mathematical structure underlying the Teukolsky equations in a Kerr metric background, a homogeneous integral equation related to the prolate spheroidal function is studied. From the consideration of the Fredholm determinant of the integral equation, a family of generalized error function is defined, with which the Fredholm determinant of the sinc kernel is also evaluated. An analytic solution of a special ease of the fifth Painlev~ transcendent is then worked out explicitly.
Motivated by the effort to understand the mathematical structure underlying the Teukolsky equations in a Kerr metric background, a homogeneous integral equation related to the prolate spheroidal function is studied. From the consideration of the Fredholm determinant of the integral equation, a family of generalized error function is defined, with which the Fredholm determinant of the sinc kernel is also evaluated. An analytic solution of a special ease of the fifth Painlev~ transcendent is then worked out explicitly.
基金
Supported by the National Natural Science Foundation of China under Grant Nos 11171329,11203003 and 11373013