摘要
Based on fluid equations, we show a time-dependent self-consistent nonlinear model for void formation in magnetized dusty plasmas. The cylindrical configuration is applied to better illustrate the effects of the static magnetic field, considering the azimuthal motion of the dusts. Tile nonlinear evolution of the dust void and the rotation of the dust particles are then investigated numerically. The results show that, similar to the unmagnetized one-dimensional model, the radial ion dragplays a crucial role in the evolution of the void. Moreover, the dust rotation is driven by the azimuthal ion drag force exerting on the dust. As the azimuthal component of ion velocity increases linearly with the strength of the magnetic field, tile azimuthal component of dust velocity increases synchronously. Moreover, the angular velocity gradients of the dust rotation show a sheared dust flow around the void.
Based on fluid equations, we show a time-dependent self-consistent nonlinear model for void formation in magnetized dusty plasmas. The cylindrical configuration is applied to better illustrate the effects of the static magnetic field, considering the azimuthal motion of the dusts. Tile nonlinear evolution of the dust void and the rotation of the dust particles are then investigated numerically. The results show that, similar to the unmagnetized one-dimensional model, the radial ion dragplays a crucial role in the evolution of the void. Moreover, the dust rotation is driven by the azimuthal ion drag force exerting on the dust. As the azimuthal component of ion velocity increases linearly with the strength of the magnetic field, tile azimuthal component of dust velocity increases synchronously. Moreover, the angular velocity gradients of the dust rotation show a sheared dust flow around the void.
基金
Supported by the Program for Innovation Research of Science in Harbin Institute of Technology under Grant No A201413