期刊文献+

Modulation of Void Motion Behavior in a Magnetized Dusty Plasma

Modulation of Void Motion Behavior in a Magnetized Dusty Plasma
下载PDF
导出
摘要 Based on fluid equations, we show a time-dependent self-consistent nonlinear model for void formation in magnetized dusty plasmas. The cylindrical configuration is applied to better illustrate the effects of the static magnetic field, considering the azimuthal motion of the dusts. Tile nonlinear evolution of the dust void and the rotation of the dust particles are then investigated numerically. The results show that, similar to the unmagnetized one-dimensional model, the radial ion dragplays a crucial role in the evolution of the void. Moreover, the dust rotation is driven by the azimuthal ion drag force exerting on the dust. As the azimuthal component of ion velocity increases linearly with the strength of the magnetic field, tile azimuthal component of dust velocity increases synchronously. Moreover, the angular velocity gradients of the dust rotation show a sheared dust flow around the void. Based on fluid equations, we show a time-dependent self-consistent nonlinear model for void formation in magnetized dusty plasmas. The cylindrical configuration is applied to better illustrate the effects of the static magnetic field, considering the azimuthal motion of the dusts. Tile nonlinear evolution of the dust void and the rotation of the dust particles are then investigated numerically. The results show that, similar to the unmagnetized one-dimensional model, the radial ion dragplays a crucial role in the evolution of the void. Moreover, the dust rotation is driven by the azimuthal ion drag force exerting on the dust. As the azimuthal component of ion velocity increases linearly with the strength of the magnetic field, tile azimuthal component of dust velocity increases synchronously. Moreover, the angular velocity gradients of the dust rotation show a sheared dust flow around the void.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第1期80-83,共4页 中国物理快报(英文版)
基金 Supported by the Program for Innovation Research of Science in Harbin Institute of Technology under Grant No A201413
  • 相关文献

参考文献25

  • 1Fortov V E, Khrapak A G, Khrapak S A, Molotkov V I and Petrov O F 2004 Phys.-Usp. 47 447. 被引量:1
  • 2Samsonov D and Goree J 1999 Phys. Rev. E 59 1047. 被引量:1
  • 3Morfill G E and Ivlev A V 2009 Rev. Mod. Phys. 81 1353. 被引量:1
  • 4Khrapak S and Morfill G 2009 Contrib. Plasm. Phys. 49 148. 被引量:1
  • 5Konopka U, Samsonov D, Ivlev A V, Goree J, Steinberg V and Morfill G E 2000 Phys. Rev. E 61 1890. 被引量:1
  • 6Kaw P K, Nishikawa K and Sato N 2002 Phys. Plasmas 9 387. 被引量:1
  • 7Wang Y N and Hou L J 2006 Thin Solid Films 506 647. 被引量:1
  • 8Schulze M, O’Connell D, Gans T, Awakowicz P and von Keudell A 2007 Plasma Sources Sci. Technol. 16 774. 被引量:1
  • 9Ishihara O, Kamimura T, Hirose K I and Sato N 2002 Phys. Rev. E 66 046406. 被引量:1
  • 10Avinash K, Bhattachariee A and Hu S 2003 Phys. Rev. Lett. 90 075001. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部