期刊文献+

城市污泥生物干化过程的有机质转化与产水规律 被引量:6

Dynamic variations of organic compositions and water generation during bio-drying of sewage sludge
下载PDF
导出
摘要 城市污泥生物干化期间,微生物降解有机质产生水分,影响最终的干化效率。该研究采用自动控制技术进行城市污泥生物干化,测定了干化过程不同阶段的有机质组分转化,并通过水分平衡方程计算了污泥干化过程中堆体的产水量,研究了干化过程的产水规律。结果表明,第1次高温期是有机质降解最快的时期,日均降幅达6.68 kg/(t·d);生物干化完成时,有机质中的易降解有机质(易水解物和脂类)比例由49.91%降至37.94%,腐殖酸的比例由39.34%升至54.14%;堆体总产水量为61.80 kg/t,产水速率排序为:第1次高温期>升温期>第2次高温期>降温期,其中第1次高温期日均产水速率达6.51 kg/(t·d),该时期也是有机质降解速率最大的时期。整个生物干化过程中,堆体产水量与蒸发量的比值为1:6.7,产水量远低于蒸发量,各阶段的产水量变化可为优化生物干化工艺提供参考。 Mechanically dewatered sewage sludge generally has a moisture content that ranges from 80% to 85%. This high level of moisture makes it necessary for this type of sludge to be dewatered and dried to facilitate the disposal. Bio-drying of sewage sludge based on thermophilic aerobic fermentation is an economical and energy-saving method for sludge disposal. During the bio-drying process, microbial water, which plays an important role in the final efficiency of sewage sludge bio-drying, is generated by the degradation of organic matter. Accordingly, the investigations of dynamic variations in organic composition and water generation are essential to the management of sewage sludge bio-drying. Therefore, the aim of this study was to investigate the degradation of organic matter and the generation of water during the sewage sludge bio-drying process. To accomplish this, a bio-drying experiment was conducted and the data were analyzed using the water mass balance equation. The bio-drying process was conducted using an auto-control technology for 20 d, during which the pile was aerated intermittently using an air blower. In addition, the pile was turned on the 9th, 12 th, 15 th and 18 th day. The overall process consisted of 4 phases which in turn were the temperature increasing phase, the first thermophilic phase(50 ℃), the second thermophilic phase, and the cooling phase(50 ℃). On-line measurements were used to determine the water vapor and aeration water input. Additionally, the levels of hydrolyzable matter, lipid, lignocellulose and humic acid in different stages were also determined. The results showed that the total water generation was 61.80 kg/t for bio-drying material based on the water mass balance equation. The order of water generation rates calculated was as follows: the first thermophilic phase the temperature increasing phase the second thermophilic phase the cooling phase. The dynamic variations in water generation were as follows: during the first thermophilic phase, water generation pe
出处 《农业工程学报》 EI CAS CSCD 北大核心 2016年第5期274-279,共6页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家自然科学基金(41401538 41301634) 浙江省自然科学基金(LQ14D010001)
关键词 污泥 降解 水分 生物干化 产水量 水分衡算 有机质 sewage sludge degradation water bio-drying water generation water mass balance organic compositions
  • 相关文献

参考文献30

  • 1Abelleira J, Pérez-Elvira S I, Sánchez-Oneto J, et al. Advanced Thermal Hydrolysis of secondary sewage sludge: A novel process combining thermal hydrolysis and hydrogen peroxide addition[J]. Resources, Conservation and Recycling, 2012, 59: 52-57. 被引量:1
  • 2Shen Y J, Chen T B, Gao D, et al. Online monitoring of volatile organic compound production and emission during sewage sludge composting[J]. Bioresource Technology, 2012, 123: 463-470. 被引量:1
  • 3Dodane P H, Mbéguéré M, Sow O, et al. Capital and operating costs of full-scale fecal sludge management and wastewater treatment systems in Dakar, Senegal[J]. Environmental Science & Technology, 2012, 46(7): 3705-3711. 被引量:1
  • 4Raynaud M, Vaxelaire J, Olivier J, et al. Compression dewatering of municipal activated sludge: Effects of salt and pH[J]. Water Research, 2012, 46(14): 4448-4456. 被引量:1
  • 5Sole-Mauri F, Illa J, Magrí A, et al. An integrated biochemical and physical model for the composting process[J]. Bioresource Technology, 2007, 98(17): 3278-3293. 被引量:1
  • 6Zhang J, Gao D, Chen T B, et al. Simulation of substrate degradation in composting of sewage sludge[J]. Waste Management, 2010, 30(10): 1931-1938. 被引量:1
  • 7Velis C A, Longhurst P J, Drew G H, et al. Biodrying for mechanical-biological treatment of wastes: A review of process science and engineering[J]. Bioresource Technology, 2009, 100(11): 2747-2761. 被引量:1
  • 8Cai L, Chen T B, Gao D, et al. Time domain reflectometry measured moisture content of sewage sludge compost across temperatures[J]. Waste Management, 2013, 33(1): 12-17. 被引量:1
  • 9Cai L, Gao D, Hong N. The effects of different mechanical turning regimes on heat changes and evaporation during sewage sludge bio-drying[J]. Drying Technology, 2015, 33(10): 1151-1158. 被引量:1
  • 10Cai L, Chen T B, Gao D, et al. Influence of forced air volume on water evaporation during sewage sludge bio-drying[J]. Water Research, 2013, 47(13): 4767-4773. 被引量:1

二级参考文献103

共引文献145

同被引文献76

引证文献6

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部