期刊文献+

基于卡尔曼一致性滤波的最优平滑

Optimal smoothers based on Kalman Consensus Filters
下载PDF
导出
摘要 文章提出一种运用于无线传感网络中目标跟踪的平滑算法,并讨论了在3种平滑框架下本算法的具体运用。该算法以无迹卡尔曼一致性滤波算法交换节点间滤波估计值,使节点信息趋于一致,以此优化后的滤波估计值作为RauchTung-Striebel(RTS)平滑方法的初始值。针对高斯最优平滑的3种框架具有不同的应用场合,分别阐述3种框架下的基于一致性滤波的无迹RTS平滑算法。仿真实验结果表明,该算法提高了整个跟踪过程的精度。 In this paper,a smoothing algorithm which is applied to target tracking in wireless sensor network was presented,then,we discussed the application area of the three smoothing algorithm forms.The algorithm uses a neighbor's information with the Unscented Kalman consensus filters to reach a consensus,and then the obtained Kalman consensus filters' value will be the initial value of the Rauch-Tung-Striebel smoother.Because the three optimal smoothing forms was suitable for different applications,we elaborated three optimal smoothing forms of the Unscented Rauch-Tung-Striebel Smoother based on Kalman consensus filter.Simulation results were provided to demonstrate the algorithm which improves the accuracy of the whole tracking.
作者 龚金成 邹娟
出处 《企业技术开发》 2016年第2期27-31,共5页 Technological Development of Enterprise
关键词 一致性滤波 无迹卡尔曼滤波 RTS平滑 固定区间 固定滞后 固定点 Kalman Consensus Filters Unscented Kalman Filter RTS smoother fixed-interval fixed-lag fixed-point
  • 相关文献

参考文献12

  • 1Julier S J,Uhlmann J K.Unscented Filtering And Nonlinear Estimation[J].Proceedings of the IEEE,2004,92(3):401-422. 被引量:1
  • 2Sarkka S.Unscented Rauch-Tung-Striebel Smoother[J].Automatic Control,IEEE Transactions on,2008,53(3):845-849. 被引量:1
  • 3Sarkka S,Hartikainen J.On Gaussian optimal smoothing of non-linear state space models[J].Automatic Control,IEEE Transactions on,2010,55(8):1938-1941. 被引量:1
  • 4Jadbabaie A,Lin J,Morse A S.Coordination of groups of mobile autonomous agents using nearest neighbor rules[J].Automatic Control,IEEE Transactions on,2003,48(6):988-1001. 被引量:1
  • 5Fax J A,Murray R M.Information flow and cooperative controlof vehicle formations[J].Automatic Control,IEEE Transactions on,2004,49(9):1465-1476. 被引量:1
  • 6Fax J A.Optimal and cooperative control of vehicle formations[D].Pasadena:California Institute of Technology,2001. 被引量:1
  • 7Olfati-Saber R.Distributed Kalman filtering for sensor networks[A].IEEE Conference on Decision&Control[C].2007 46th IEEE Conference on.IEEE,2007. 被引量:1
  • 8Olfati-Saber R.Distributed Kalman filter with embedded consensus filters[A].IEEE Conference on Decision&Control[C].2005 and 2005 European Control Conference.CDCECC'05.44th IEEE Conference on.IEEE,2005. 被引量:1
  • 9Olfati-Saber R,Shamma J S.Consensus filters for sensor networks and distributed sensor fusion[A].IEEE Conference on Decision&Control[C].2005 and 2005 European Control Conference.CDC-ECC'05.44th IEEE Conference on.IEEE,2005. 被引量:1
  • 10Olfati-Saber R.Distributed Kalman filtering and sensor fusion in sensor networks[M].Berlin:Networked Embedded Sensing and Control,2006. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部