期刊文献+

一种改进的SVM算法对miRNA表达谱的分析 被引量:2

MiRNA expression profiling analysis based on an improved SVM algorithm
下载PDF
导出
摘要 基于miRNA表达谱数据集,提出了一种新的数据挖掘算法——tSVM-kNN(t statistic with support vector machine-k nearest neighbor).该算法的思想为:首先,采用统计量法对该数据集进行特征初选;其次,将融合了支持向量机和K-最近邻判别法思想的算法——SVM-kNN算法作为分类器;最后,输出分类结果.仿真实验表明,SVMkNN算法分类器的分类能力比单独运行SVM和kNN都好;在miRNA"标签"的数量和识别精度方面,tSVM-kNN算法只需要取5个miRNAs即可获得96.08%的分类准确率.与同类的算法相比,其具有明显的优越性. Based on miRNAs expression profiling data sets,new data mining algorithms—tSVM-kNN(t statistic with support vector machine-k nearest neighbor)is proposed.Firstly,an original selection is made to this set by characteristics using t-statistic method.After that,both ideas in support vector machine(SVM)and k nearest neighbor(kNN)algorithms are combined as a classifier,i.e.,SVM-kNN algorithm.Finally,the classification results as outputs can be obtained.Then,simulation experiments show that SVM-kNN algorithm as a classifier can display a stronger ability compared with running SVM and kNN,respectively.As to the aspects of quantity and recognition accuracy with a miRNAs label,tSVM-kNN algorithm only need five miRNAs but can get a precision of 96.08% in classification.Obviously,compared with some existed methods,the proposed algorithm has more advantages.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2016年第2期47-52,共6页 Journal of Northwest Normal University(Natural Science)
基金 广东省自然科学基金资助项目(2015A030310354) 广东省教育厅创新强校工程项目(Q14606)
关键词 miRNAs表达谱 统计量 K-最近邻 SVM-kNN算法 miRNAs expression profiling t statistic k-nearest neighbor discrimination SVM-kNN algorithm
  • 相关文献

参考文献19

  • 1LEA M A. Recently identified and potential targets for colon cancer treatment [J]. Future Oncology, 2010, 6(6): 993. 被引量:1
  • 2ZHANG B, PAN X, COBB G P, et al. MieroRNAs as oncogenes and tumor suppressors[J]. Developmental Biology, 2007, 302(1) : 1. 被引量:1
  • 3DALMAY T. MicroRNAs and cancer[J]. Journal of Internal Medicine, 2008, 263(4): 366. 被引量:1
  • 4WU W, SUM M, ZOU G M, et al. MicroRNA and cancer: Current status and prospective [J]. International Journal of Cancer, 2007, 120 (5) : 953. 被引量:1
  • 5DRAKAKI A, ILIOPOULOS D. MicroRNA gene networks in oncogenesis [ J ]. Current Genomics, 2009, 10(1): 35. 被引量:1
  • 6LU J, GETZ G, MISKA E A, et al. MicroRNA expression profiles classify human cancers [J ]. Nature, 2005, 435: 834. 被引量:1
  • 7ZHENG Y, KWOH C K. Cancer classification with microRNA expression patterns found by an information theory approach [ J]. Journal of Computers, 2006, 1(5): 30. 被引量:1
  • 8TRAN D H, HO T B, PHAM T H, etal. MicroRNA expression profiles for classification and analysis of tumor samples[J]. IEICE Transactons onInformation and Systems, 2011, 94(3) : 416. 被引量:1
  • 9KIM K J, CHO S B. Exploring features and classifiers to classify microRNA expression profiles of human eaneer[ C ]/ /17 th International Conference on Neural Information Processing. Berlin: Springer, 2010 : 225. 被引量:1
  • 10郑明,陈子毅,汪嘉冈编著..数理统计讲义[M].上海:复旦大学出版社,2007:266.

共引文献132

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部