期刊文献+

基于无模型自适应控制的城轨列车自动驾驶研究 被引量:17

Research on Automatic Train Operation Based on Model-free Adaptive Control
下载PDF
导出
摘要 城轨列车ATO(Automatic Train Operation)目标速度曲线的精确追踪是保障城轨列车安全、高效、舒适和节能的关键环节。针对列车ATO系统为非线性时变滞后复杂系统,具有建模难和鲁棒性要求高等特点,本文将无模型自适应控制方法引入ATO目标速度曲线追踪控制器的设计问题中。通过与PID控制方法对比,基于MFAC(Model Free Adaptive Control)的ATO目标速度曲线追踪控制算法,具有追踪效果好、速度误差小、停车精度高、舒适度高、能耗少等特点。 The precise tracking of ATO (Automatic Train Operation) target speed curves in urban rail transit is the key for the safety, efficiency, passenger comfort and energy efficiency of trains. As the ATO system has the characteristics of hard modeling and high robustness requirement as a nonlinear, time variant, state-delayed and complex system, this paper introduced the method of model-free adaptive control into the design of ATO target speed curves tracking controller. By comparison with PID algorithm, the tracking control algorithm of ATO target speed curves using model-free adaptive control demonstrated good tracking effect, little speed er- ror, high stopping precision, high comfort and less energy consumption.
作者 石卫师
出处 《铁道学报》 EI CAS CSCD 北大核心 2016年第3期72-77,共6页 Journal of the China Railway Society
关键词 无模型自适应控制 列车自动驾驶 目标速度曲线 非线性系统 城市轨道交通 model-free adaptive control automatic train operation target speed curves nonlinear system ur- ban rail transit
  • 相关文献

参考文献15

二级参考文献91

共引文献911

同被引文献109

引证文献17

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部