期刊文献+

微流体系统流容特性的仿真研究 被引量:1

Dynamic Simulation of Flow-Capacity of Polymer Tube in Microfluidic Chip
下载PDF
导出
摘要 要充分理解并利用微流体系统中流体的流动,需要对流体的动态特性有全面的了解。目前,流感与流阻的计算已经被大家熟知,可流容的计算仍是一个难点。本文设计了一个微流体流容器件,提出了测量微流体系统流容特性的方法。流容器件由圆形截面的一段玻璃管和一段弹性管组成。基于微流体等效电路理论我们对器件模型进行分析,仿真实验了系统在恒压和动态压强下不同的响应情况。利用恒压驱动的衰减振荡结果拟合出弹性流道的流容值,并与动态压强输入模型的共振响应结果进行了对比验证。结果证明,仿真结果与理论分析一致,拟合的流容值正确,提出的分析方法正确。整个模型的动态响应特性与电路中的带通滤波器类似。 The dynamic flow capacity of the capacitive microfluidic chip was empirically approximated,mathematically modeled,theoretically analyzed in Hagen-Poiseuillelawandmicrofluidic equivalent circuit theory,and numerically simulated with the a simple capacitive microfluidic chip,consisting of the circular glass tube connected with an elastic polydimethylsiloxane( PDMS) tube. The impact of the realistic situation,including but not limited to the constant and alternating driving pressures,PDMS density and Young's modulus,and dynamic viscosity of water,on the flow capacity of PDMS tube was simulated and evaluated by data-fitting of the damped resonance response of the dynamic driver model. The fitted results show that the response characteristics of the dynamic model are basically analogous to those of a band-pass filter in an electronic circuit. The numerically simulated and theoretically analyzed results of the flow capacity were found to be in fairly good agreement.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2016年第3期362-366,共5页 Chinese Journal of Vacuum Science and Technology
基金 江苏省通信工程技术研究中心项目(ZSF0503) 江苏省普通高校研究生科研创新计划项目(CXZZ13_0465)
关键词 微流体 流容 等效电路理论 动态响应 带通滤波器 Microfluidics Flow capacity Equivalent circuit theory Dynamic characteristic Band-pass filter
  • 相关文献

参考文献13

  • 1郑兆志,何钦波.直接吸收式太阳能集热纳米流体光热特性研究[J].真空科学与技术学报,2015,35(1):84-88. 被引量:7
  • 2Kim C, Lee K, Kim J H, et al. A Serial Dilution Microflu- idic Device Using a Ladder Network Generating Logarith- mic or Linear Concentrations [ J ]. Lab Chip ,2008,8 (3) : 473 - 479. 被引量:1
  • 3Thorsen T, Maerkl S, Quake S R. Microfluidic Large-Scale Integration [ J ]. Science,2002,298 (5593) :580 - 584. 被引量:1
  • 4Devaraju NS, Unger MA. Pressure Driven Digital Logic in PDMS Based Microfluidic Devices Fabricated by Muhilay- er Soft Lithography [ J ]. Lab Chip, 2012,12 ( 22 ) :4809 - 4815. 被引量:1
  • 5Leslie D C, Easley C J, Karlinsey J M, et al. Frequency- Specific Flow Control in Microfluidic Circuits with Passive Elastomeric Features [ J ]. Nature Phys, 2009,5 ( 3 ) : 231 - 235. 被引量:1
  • 6杨军,吕国强,邓光晟,黎泽伦,胡跃辉,谢松廷.等效电路法计算耦合腔慢波结构特性[J].真空科学与技术学报,2008,28(6):526-530. 被引量:5
  • 7Bourouina T, Grandchamp J P. Modeling Micropumps with Electrical Equivalent Networks [ J ]. J Micromech Micro- eng,1996,6(4) :398 -404. 被引量:1
  • 8Hsu Y C,Le N B. Inertial Effects on Flow Rate Spectrum of Diffuser Micropumps [ J ]. Biomed Mierodevices, 2008, 10(5) :681 -692. 被引量:1
  • 9Bruus H. Theoretical Mierofluidics [ M 1. New York : Oxford University Press ,2008. 被引量:1
  • 10赵春晖,张朝柱编著..微波技术[M].北京:高等教育出版社,2007:418.

二级参考文献15

共引文献10

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部