期刊文献+

椰壳活性炭孔结构对Li-S电池性能的影响 被引量:5

Effect of Pore Structure of the Coconut Shell Activated Carbon on the Performance of Li-S Batteries
下载PDF
导出
摘要 以椰壳为原料,采用化学活化法制备不同比表面积和孔结构的活性炭,通过改变制备工艺参数来调节活性炭的比表面积和孔结构。将活性炭负载60%(质量分数)硫后,作为锂硫电池的正极材料,研究活性炭孔结构对锂硫电池性能的影响。结果表明:随着活性炭比表面积的增加,中孔比例增加,锂硫电池比容量逐步提高。其中,当活化剂与炭化料的质量比为4时,活性炭的比表面积达到2900m2/g,中孔率达到15.36%。在电流密度为200mA/g时,首次放电比容量高达1294.5mAh/g,循环100次后的可逆比容量仍然高达809.3mAh/g。 Coconut shell-based activated carbon with different surface area and pore structure was prepared through the chemical activation, which was then composited with sulfur and used as the cathode materials for lithiumsulfur batteries. Experimental results showed that the specific capacity was gradually increased with increasing the surface area and the proportion of mesoporous in activated carbon. When weight ratio between activator and carbon materials was 4, the activated carbon had a high surface area of 2900 m^2/g and a proportion of mesopores of 15. 36%. And the initial specific capacity of batteries was 1294. 5 mAh/g at a current density of 200 mA/g and retained 809. 3 mAh/g after 100 cycles which showing good cycling performance.
出处 《材料导报》 EI CAS CSCD 北大核心 2016年第6期52-55,共4页 Materials Reports
基金 国家自然科学基金(51162006,51362009) 海南省国际科技合作专项(KJHZ2015-02) 海南省重点项目(ZDXM2015118) 中西部计划学科重点建设(ZXBJH-XK009)
关键词 活性炭 孔结构 锂硫电池 电化学性能 activated carbon, pore structure, lithium-sulfur battery, electrochemical performance
  • 相关文献

参考文献20

  • 1Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechar-geable lithium batteries [J]. Angew Chem,2008,47(16):2930. 被引量:1
  • 2Etacheri V, Marom R, Elazari R, et al. Challenges in the develop- ment of advanced Li-ion batteries: A review[J]. Energy Environ- mental Sci, 2011, 4(9): 3243. 被引量:1
  • 3Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage [J]. Nat Mater,2012,11(1):19. 被引量:1
  • 4Wang J, Chew S, Zhao Z, et al. Sulfur-mesoporous carbon compo- sites in conjunction with a novel ionic liquid electrolyte for lithium re- chargeable batteries [J]. Carbon,2008,46(2):229. 被引量:1
  • 5Bresser D, Passerini S, Scrosati B. Recent progress and remaining challenges in sulfur-based lithium secondary batteries- A review [J]. Chem Commun,2013,49(90) : 10545. 被引量:1
  • 6Mikhaylik Y V, Akridge J R. Polysulfide shuttle study in the Li/S battery system [J]. J Electrochem Soc,2004,151(11):A1969. 被引量:1
  • 7Jin K, Zhou X, Zhang L, et al. Sulfur/carbon nanotube composite film as a flexible cathode for lithium-sulfur batteries [J]. J Phys Chem C, 2013,117(41) : 21112. 被引量:1
  • 8Cheng X B, Huang J Q, Zhang Q, et al. Aligned carbon nanotube/ sulfur composite cathodes with high sulfur content for lithium-sulfur batteries [J]. Nano Energy, 2014,4 : 65. 被引量:1
  • 9Jia J C, Xin J, Qiu J S, et al. The preparation of nano-sulfur/MWC- NTs and its electrochemical performance [J]. Electrochim Acta, 2010,55 (27) : 8062. 被引量:1
  • 10Xi K, Kidambi P R, Chen R, et al. Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries [J]. Nanoscale, 2014,6(11) :5746. 被引量:1

同被引文献29

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部