期刊文献+

鲁棒性迭代学习控制在去毛刺机器人轨迹跟踪中的应用 被引量:6

Application of robust iterative learning control to burring robot path tracking
下载PDF
导出
摘要 研究了去毛刺机器人的轨迹跟踪控制。考虑到在工业机器人去毛刺加工过程中,由于受非重复性扰动、毛刺大小不同引起切削力变化以及动态建模不确定性因素的影响,传统的迭代学习控制算法无法精确规划出去毛刺机器人的打磨路径,且很难实现高精度的跟踪控制,不能保证系统的稳定性,提出了一种鲁棒性迭代学习控制算法,旨在提高去毛刺机器人的跟踪性能和对环境的抗干扰能力。该算法由于引入了鲁棒项,与传统的迭代学习控制算法相比,抗干扰能力得到增强,跟踪示教轨迹的性能得到提高,跟踪轨迹精度得到改善,解决了传统迭代学习控制算法需要确定模型才能完成打磨轨迹的精度要求的问题。仿真试验验证了该鲁棒迭代学习算法的鲁棒性和轨迹跟踪精度。 The study investigated the path tracking control problem in the burring process of an industrial robot, and found that the traditional iterative learning control algorithm cannot precisely plan the polishing path of a burring ro- bot due to the influences of non-repetitive disturbances, cutting force variation caused by burr size difference, un- certainty in dynamic modeling and other uncertain factors, so the higher precise tracking control can not be a- chieved, and the stability of the burring system cannot be guaranteed. Then, a kind of robust iterative learning con- trol algorithm was put forward to improve burring robots' The adoption of a robustness item, makes this algorithm tracking performance and anti-interference ability. robust when under interference and more accurate when tracking path, and traditional iterative learning control' s problem that the accuracy requirements of polishing path can be completed only after determining the model can be solved. The simulation experiment verified the ro- bustness of the robust iterative learning algorithm and showed its little tracking error.
出处 《高技术通讯》 CAS CSCD 北大核心 2015年第12期1062-1068,共7页 Chinese High Technology Letters
基金 863计划(2013AA040501) 重庆市科委151机器人工程课题(cstc2013jcsf-zdzxqqX0005)资助项目
关键词 去毛刺 鲁棒迭代学习控制 跟踪轨迹 burring, robust iterative learning control, tracking path
  • 相关文献

参考文献15

  • 1Kwek L C, Wong E K, Loo C K, et al. Application of active force control and iterative learning in a 5-1ink biped robot. Journal of Intelligent and Robotic Systems, 2003, 37(2) : 143-162. 被引量:1
  • 2Ruan X, Li Z. Convergence characteristics of PD-type it- erative learning control in discrete frequency domain. Journal of process control, 2014, 24:86-94. 被引量:1
  • 3He X, Zhuang H, Zhang D, et al. Pulse neural network- based adaptive iterative learning control for uncertain ro- bots. Neural Comput & Applic, 2013, 23(7-8): 1885- 1890. 被引量:1
  • 4Zhu C, Aiyama Y, Arai T, et al. Positioning in releasing manipulation by iterative learning control. Jourhal of In- telligent Robot Systems, 2006, 46(4) : 383-404. 被引量:1
  • 5Argall B, Browning B, Veloso M. Learning mobile robot motion control from demonstrated primitives and human feedback. Springer Tracts in Advanced Robotics, 2011, 70 : 417-432. 被引量:1
  • 6Freeman C T. Newton-method based iterative learning control for robot-assisted rehabilitation using FES. Mecha- tronics, 2014, 24:934-943. 被引量:1
  • 7Chen W, Tomizuka M. Dual-stage iterative learning con- trol for MIMO mismatched system with application to ro- bots with joint elasticity. IEEE Transactions on control systems technology, 2014, 22(4): 1350-1361. 被引量:1
  • 8Tayebi A, Islam S. Adaptive iterative learning control for robot manipulators: Experimental results. Control Engi- neering Practice, 2006, 14(7) : 843-851. 被引量:1
  • 9Zhao Y, Lin Y, Xi F, et al. Calibration-based iterative learning control for path tracking of industrial robots. IEEE Transactions on industrial electronics, 2015, 65 (2) : 2921-2929. 被引量:1
  • 10Jia B, Liu S, Liu Y. Visual trajectory tracking of indus- trial manipulator with iterative learning control. Interna- tional Jourrml of industrial robot, 2014, 42( 1 ) : 54-63. 被引量:1

二级参考文献41

共引文献31

同被引文献19

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部