摘要
A micromechanical investigation on simple shear behavior of dense granular assemblies was carried out by discrete element method.Three series of numerical tests were performed to examine the effects of initial porosity,vertical stress and particle shape on simple shear behavior of the samples,respectively.It was found that during simple shear the directions of principal stress and principal strain increment rotate differently with shear strain level.The non-coaxiality between the two directions decreases with strain level and may greatly affect the shear behavior of the assemblies,especially their peak friction angles.The numerical modelling also reveals that the rotation of the principal direction of fabric anisotropy lags behind that of the major principal stress direction during simple shear,which is described as fabric hyteresis effect.The degrees of fabric and interparticle contact force anisotropies increase as particle angularity increases,whereas the orientations of these anisotropies have not been significantly influenced by particle shape.An extended stress–dilatancy relationship based on ROWE-DAVIS framework was proposed to consider the non-coaxiality effect under principal stress rotation.The model was validated by present numerical results as well as some published physical test and numerical modelled data.
A micromechanical investigation on simple shear behavior of dense granular assemblies was carried out by discrete element method.Three series of numerical tests were performed to examine the effects of initial porosity,vertical stress and particle shape on simple shear behavior of the samples,respectively.It was found that during simple shear the directions of principal stress and principal strain increment rotate differently with shear strain level.The non-coaxiality between the two directions decreases with strain level and may greatly affect the shear behavior of the assemblies,especially their peak friction angles.The numerical modelling also reveals that the rotation of the principal direction of fabric anisotropy lags behind that of the major principal stress direction during simple shear,which is described as fabric hyteresis effect.The degrees of fabric and interparticle contact force anisotropies increase as particle angularity increases,whereas the orientations of these anisotropies have not been significantly influenced by particle shape.An extended stress–dilatancy relationship based on ROWE-DAVIS framework was proposed to consider the non-coaxiality effect under principal stress rotation.The model was validated by present numerical results as well as some published physical test and numerical modelled data.
基金
Projects(50909057,51208294,41372319)supported by the National Natural Science Foundation of China
Project(15ZZ081)supported by Innovation Program of Shanghai Municipal Education Commission,China
Project(20131129)supported by Innovation Program of Shanghai Postgraduate Education,China