期刊文献+

二水平因子设计混合偏差新的下界

A new lower bound to mixture discrepancy in two levels fractional factorial designs
下载PDF
导出
摘要 混合偏差是在已有的偏差下提出的一种新的偏差,它克服了中心化L2偏差和可卷L2偏差的一些不足.混合偏差作为部分因子设计的均匀性测度,寻找它的精确下界非常重要.获得了二水平设计混合偏差的一个新的下界,数值例子说明它比已有的下界在某些设计中更加精确. The mixture discrepancy is a new discrepancy based on existing discrepancy,which overcomes some weakness of the centered and wrap-round L2-discrepancies.As the measure of uniformity of fractional factorial designs,it is very important to look for the accurate lower bounds to the mixture discrepancy.This paper gives a new lower bound to the mixture discrepancy in two levels fractional factorial designs.The new lower bound is better than existing lower bounds in certain factorials designs.Finally,some examples are given to illustrate the results.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期34-38,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11201177 11561025) 湖南省教育厅优秀青年项目(14B146)
关键词 U型设计 因子设计 混合偏差 下界 U type design fractional factorial design mixture discrepancy lower bound
  • 相关文献

参考文献1

二级参考文献14

  • 1BAI Z D.SILVERSTEIN J W. Spectral analysis of large dimensional random matrices[M], 2nd edition. Beijing:Science Press,2010:119-160. 被引量:1
  • 2SILVERSTEIN J W.BAI Z. D. On the empirical distribution of eigenvalues of a class of large dimensional random matrices[J].Journal of Multivariate Analysis, 1995,54(2) : 175-192. 被引量:1
  • 3NARCENKO,PASTUR. Distribution for some sets of random matrices[J], Math USSR-Sb,1967,1:457-483. 被引量:1
  • 4YIN Y Y Q.BAI Z D,KRISHNAIAH. On the limit of the large eigenvalue of the largedimensional sample covariance matrix[J]. Probab Theory Related Fields* 1988,78:509-521. 被引量:1
  • 5BAI Z D, YIN Y Q. Limit of the smallest eigenvalue of large-dimensional sample covariance matrix[J]. Ann Probab, 1993,21:1275-1294. 被引量:1
  • 6BAI Z D, SILVERSTEIN J W. No eigenvalues outside the support of the limiting spectral distribution o. large dimensionalsample covariance matrices[J]. Ann Probab, 1998,26(1) : 316-345. 被引量:1
  • 7SILVERSTEIN J W. Weak convergence of random functions defined by the eigenvectors of sample covariance matrices[J].Ann Probab, 1990,18: 1174-1193. 被引量:1
  • 8SILVERSTEIN J W. On the eigenvectors of large-dimensional sample covariance matrices[J]. J Multivariate Anal, 1989,30:1-16. 被引量:1
  • 9SILVERSTEIN J W. Some limit theorems on the eigenvectors of large-dimensional sample covariance matrices [J]. JMultivariate Anal, 1984,15:295-324. 被引量:1
  • 10BAI Z DyBAIQI MIAO,PAN G M. On asymptotics of eigenvectors of large sample covariance matrix[J]. Ann Probab,2007,35(4):1532-1572. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部