期刊文献+

Experimental study of the azimuthal performance of 3D acoustic transmitter stations

Experimental study of the azimuthal performance of 3D acoustic transmitter stations
下载PDF
导出
摘要 Better well logging techniques for geologic investigations are urgently needed to identify and evaluate complex reservoirs.We describe a new type of 3D transmitter station with corresponding circuits and bodies.They can be used in a promising new technique of acoustic reflection well logging,that features better azimuthal detection capabilities,as well as better investigation depth.The transmitter stations consist of three-level subarrays that can radiate acoustic energy in any required azimuth of 3D space by circularly exciting various combinations at different levels.We tested the 3D acoustic transmitter stations and obtained laboratory directivity measurements with the3 D acoustic transmitter stations for the first time.The results show that the 3-d B beam width in the horizontal plane ranges from 59° to 67° as a result of phase-delayed excitation.The main beam is steered in the vertical plane at a deflection angle that ranges from 0° to 16° when the delay time of the excitation pulse between each pair of adjacent arc arrays is gradually adjusted.The 3-d B beam width is equal to 11°,whereas the deflection angle in the vertical plane is equal to 14°.Each of the four third-level subarrays in the same circumferential direction display consistent horizontal and vertical directivities,thus satisfying the requirements of azimuthal acoustic reflection logging. Better well logging techniques for geologic investigations are urgently needed to identify and evaluate complex reservoirs.We describe a new type of 3D transmitter station with corresponding circuits and bodies.They can be used in a promising new technique of acoustic reflection well logging,that features better azimuthal detection capabilities,as well as better investigation depth.The transmitter stations consist of three-level subarrays that can radiate acoustic energy in any required azimuth of 3D space by circularly exciting various combinations at different levels.We tested the 3D acoustic transmitter stations and obtained laboratory directivity measurements with the3 D acoustic transmitter stations for the first time.The results show that the 3-d B beam width in the horizontal plane ranges from 59° to 67° as a result of phase-delayed excitation.The main beam is steered in the vertical plane at a deflection angle that ranges from 0° to 16° when the delay time of the excitation pulse between each pair of adjacent arc arrays is gradually adjusted.The 3-d B beam width is equal to 11°,whereas the deflection angle in the vertical plane is equal to 14°.Each of the four third-level subarrays in the same circumferential direction display consistent horizontal and vertical directivities,thus satisfying the requirements of azimuthal acoustic reflection logging.
出处 《Petroleum Science》 SCIE CAS CSCD 2016年第1期52-63,共12页 石油科学(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos.11204380,11374371,61102102,11134011) National Science and Technology Major Project (Grant No.2011ZX05020-009) China National Petroleum Corporation (Grant Nos.2014B-4011,2014D-4105,2014A3912) Petro China Innovation Foundation (2014D-5006-0307) China Scholarship Council (No.201306445018)
关键词 transmitter deflection logging urgently geologic satisfying azimuth exciting excitation formations transmitter deflection logging urgently geologic satisfying azimuth exciting excitation formations
  • 相关文献

参考文献10

二级参考文献59

共引文献165

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部