期刊文献+

染色体片段交叉重组的频谱分配遗传算法 被引量:4

Spectrum allocation genetic algorithm of chromosome segment crossing and recombining
下载PDF
导出
摘要 传统的遗传算法在解决认知无线电频谱分配问题时,没有考虑染色体中来自于不同频谱的基因所表达的遗传特性是不同的,而不加区别地对染色体进行交叉会降低其进化效率。针对此问题,依据遗传特性把染色体分成不同的片段,将染色体交叉设定在每一个片段内,并加入了染色体片段重组过程,用来提高染色体进化的效率。然后从系统公平性的角度设计了自适应的变异概率,让接入率较低的染色体获得更大的变异机会,以提高系统的公平性。最后与遗传算法(genetic algorithm,GA)和量子遗传算法(quantum genetic algorithm,QGA)进行了仿真对比实验,结果表明该算法的收敛速度更快,且同时获得了较高的系统效益以及用户接入率。 Traditional genetic algorithm in solving the problem of cognitive radio spectrum allocation,without considering the genetic characteristics of genes expressed from the chromosome in different spectrum is different,and indiscriminate cross-chromosome evolution will reduce its efficiency. To solve this problem,this paper based on genetic characteristics divided the chromosome into different segments,chromosome crossover would be set within each segment,and joined the chromosome segment restructuring process,to improve the efficiency of chromosomal evolution,and from the perspective of fairness design adaptive mutation probability,so that the lower rate of chromosomal gain access to greater mutating opportunities to improve the fairness of the system. Finally with genetic algorithm and quantum genetic algorithm for the simulation experiments comparing,the results show that this algorithm converges faster,and also wins the higher system benefit and user access ratio.
出处 《计算机应用研究》 CSCD 北大核心 2016年第4期1219-1223,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61379057 61309001 61379110 61103202) 国家"973"计划资助项目(2014CB046305) 国家教育部博士点基金新教师类资助项目(20110162120046) 中南大学中央高校基本科研业务费专项资金资助项目(2015zzts232)
关键词 认知无线网络 频谱分配 遗传算法 系统效益 用户接入率 cognitive radio network spectrum allocation genetic algorithm system benefit user access ratio
  • 相关文献

参考文献14

  • 1Haykin S. Cognitive radio:brain-empowered wireless communications[J] . IEEE Journal on Selected Areas in Communications, 2005, 23(2):201-220. 被引量:1
  • 2邝祝芳,陈志刚,赵明.认知无线Mesh网络中一种协助的分布式组播调度算法[J].小型微型计算机系统,2013,34(2):264-268. 被引量:2
  • 3Wang Beibei, Wu Yongle, Liu K J R. Game theory for cognitive radio networks:an overview[J] . Computer Networks, 2010, 54(14):2537-2561. 被引量:1
  • 4Wang Xinbing, Li Zheng, Xu Pengchao, et al. Spectrum sharing in cognitive radio networks:an auction-based approach[J] . IEEE Trans on Systems, Man, and Cybernetics, Part B:Cybernetics, 2010, 40(3):587-596. 被引量:1
  • 5Gzüpek D, Alagz F. Genetic algorithm-based scheduling in cognitive radio networks under interference temperature constraints[J] . International Journal of Communication Systems, 2011, 24(2):239-257. 被引量:1
  • 6Peng Chunyi, Zheng Haitao, Zhao B Y. Utilization and fairness in spectrum assignment for opportunistic spectrum access[J] . Mobile Networks and Applications, 2006, 11(4):555-576. 被引量:1
  • 7廖楚林,陈劼,唐友喜,李少谦.认知无线电中的并行频谱分配算法[J].电子与信息学报,2007,29(7):1608-1611. 被引量:58
  • 8Koroupi F, Talebi S, Salehinejad H. Cognitive radio networks spectrum allocation:an ACS perspective[J] . Scientia Iranica, 2012, 19(3):767-773. 被引量:1
  • 9张丽影,曾志文,陈志刚,邝祝芳.认知无线网络中基于约束算子的二进制粒子群频谱分配算法[J].小型微型计算机系统,2013,34(6):1226-1229. 被引量:9
  • 10Wu Jing, Li Yi, Liu Gang, et al. Joint power and spectrum allocation in multi-hop cognitive radio networks[J] . The Journal of China Universities of Posts and Telecommunications, 2014, 21(2):9-14. 被引量:1

二级参考文献36

共引文献118

同被引文献31

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部