期刊文献+

奇偶直方图负载均衡超立方对等云MapReduce模型

Parity histogram sampling combined load balancing partitioning for hypercube cloud hierarchical MapReduce model
下载PDF
导出
摘要 针对传统MapReduce算法结构在处理大数据时,负载均衡性能不理想的缺点,设计了一种具有负载均衡机制的层次MapReduce模型。该模型利用超立方拓扑结构对MapReduce的映射操作进行改进,通过特定算法将八个结构化的数据中心链接到一个对等的云环境结构中,并使用奇偶直方图组合采样方式的均衡划分方法,实现在用户请求下的节点工作负荷指数均衡。最后,基于Hadoop框架对所提算法进行仿真实验,结果显示所提算法结构相对于原始MapReduce结构,具有更高的并行计算的资源利用率,以及更佳的容错和负载均衡性能,综合性能得到有效提升。 According to the traditional MapReduce algorithm in processing large data structure had no ideal performance for fault tolerant rate and load balancing,this paper designed a hierarchical MapReduce model with load balancing mechanism. The used of hypercube topology mapping operation on the MapReduce improved the performance of the model. and through a specific algorithm,eight structured linked the data center to a peer-to-peer cloud environment structure,then used the equilibrium partitioning method with the parity histogram combined sampling method to realize the node workload balancing under the user's request. Finally,it made the simulation on Hadoop framework for the proposed algorithm,which shows that the proposed algorithm is more efficiency in utilization rate of parallel computing resources,and better fault tolerance and load balancing performance than the original MapReduce structure,so the improved method effectively enhances the comprehensive performance of proposed algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2016年第4期1075-1078,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61462069)
关键词 奇偶 直方图 组合采样 负载均衡 超立方 层次MapReduce模型 parity histogram composite sampling load balancing hypercube hierarchical MapReduce model
  • 相关文献

参考文献7

二级参考文献100

  • 1Dean J, Ghemawat S. MapReduce: Simplified dala processing on large clusters//Proceedings of the Conference on Operating System Design and Implementation(OSDU04,). San Francisco, USA, 2004: 137-150. 被引量:1
  • 2Thusoo A, Sarma J S, JainN, Shao Z, Chakka P, Anthony S, Liu H, Wyckoff P, Murthy R. Hive: A warehousing solution over a map-reduce framework//Proceedings of the Conference on Very Large Databases (VLDB' 09). Lyon, France, 2009:1626-1629. 被引量:1
  • 3Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig Latin: A not-so-foreign language for data processing//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD' 08). Vancouver, BC, Canada, 2008:1099 1110. 被引量:1
  • 4Bu Y, Howe B, Balazinska M, Ernst M D. HaLoop.. Efficient iterative data processing on large clusters//Proceedings of the Conference on Very Large Databases (VLDB' 10). Sin gapore, 2010:285-296. 被引量:1
  • 5Ekanayake J, Li H, Zhang B, Gunarathne T, Bae S-H, Qiu J, Fox G. Twister: A runtime for iterative MapReduce// Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing. Chicago, Illinois, USA, 2010:810-818. 被引量:1
  • 6Wilson G V. Practical Parallel Programming. Cambridge, MA.. MIT Press, 1995. 被引量:1
  • 7Valiant L G. A bridging model for parallel computation. Communications of the ACM, 1990, 33(8): 103-111. 被引量:1
  • 8Dean J, Ghemawat S. MapReduce: A flexible data processing tool. Communications of the ACM, 2010, 53(1): 72-77. 被引量:1
  • 9Pavlo A, Paulson E, Rasin A, Abadi D J, DeWitt D J, Mad den S, Stonebraker M. A comparison of approaches to large scale data//Proceedings of the 2009 ACM SIGMOD Interna tional Conference on Management of Data (SIGMOD' 09) New York, USA, 2009:165-178. 被引量:1
  • 10Stonebraker M, Abadi D J, DeWitt D J, Madden S, Paulson E, Pavlo A, Rasin A. MapReduce and parallel DBMSs: Friends or foes? Communications of the ACM, 2010, 53(1) : 64-71. 被引量:1

共引文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部