期刊文献+

改进TOPSIS与GA-BP耦合的采空区危险性辨析 被引量:3

Goafs' Risk Discrimination Based on Improved TOPSIS Coupled with GA-BP
下载PDF
导出
摘要 针对目前采空区危险性辨析过程繁冗且准确性低的问题,提出了改进的TOPSIS与神经网络耦合的辨析方法.首先,为提高训练样本采空区危险性辨析客观准确性,将理想解方法(TOPSIS)进行改进,分别利用绝对理想点以及IFAHP避免了由于理想解及权重变化引起的逆序现象,并利用各辨析指标不同危险等级的区间临界值实现了TOPSIS对采空区危险性等级划分.将改进TOPSIS运用于某矿山100组采空区进行危险性辨析并验证结果.然后,为简化辨析过程,使改进TOPSIS与GA-BP神经网络有效结合,以经过TOPSIS辨析的100组样本采空区对GA-BP训练得到神经网络模型并对5组样本进行危险等级输出,结果与事实相符.研究结果不仅提高了采空区危险性辨析的客观性,并为简化辨析过程提供了新的思路,提高了工程应用性. According to the complex process and low accuracy of goaf area risk discrimination, the improved TOPSIS coupled with neural network was proposed. Firstly, the TOPSIS method was improved and used on goal area in order to enhance the objection and accuracy of sample goafs' risk discrimination. Absolute ideal point and improved fuzzy analytic hierarchy process (IFAHP) objective were respectively used to avoid the reverse phenomenon caused by the change of ideal point and weights. And risk grade division was realized through different instability degree interval threshold value of discrimination index. The improved TOPSIS method was used to risk discrimination of 100 groups goaf area samples in a certain mine and results were validated. Then, in order to simplify the discrimination process, the improved TOPSIS and GA-BP neural network were combined effectively. Calculating neural network model was trained by the 100 groups sample data which were discriminated by improved TOPSIS, the 5 groups were discriminated by the model, and the discrimination results agree with the facts. The study results not only enhance the objection of goaf area risk discrimination, but also provide a new thought for simplifying the discrimination process and expand the engineering application in field.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第3期440-445,共6页 Journal of Northeastern University(Natural Science)
基金 国家"十二五"科技支撑计划项目(2012BAK09B02-05) 国家自然科学基金资助项目(51274250) 中央高校基本科研业务费专项资金资助项目(2013zzts057)
关键词 采空区 危险性辨析 改进TOPSIS IFAHP GA-BP神经网络 goaf risk discrimination improved TOPSIS IFAHP ( improved fuzzy analytic hierarchy process) GA-BP neural network
  • 相关文献

参考文献10

  • 1熊立新,罗周全,罗贞焱,谢承煜.深部复杂环境下采空区激光扫描异常点云数据修正[J].东北大学学报(自然科学版),2014,35(3):438-442. 被引量:11
  • 2Dawson E M,Roth W H,Drescher A.Slope stability analysis by strength reduction[J].Geotechnique,1999,49(6):835-840. 被引量:1
  • 3李琨,高宪文,仇治学,田中大.有杆泵抽油系统井下工况诊断的物元分析方法[J].东北大学学报(自然科学版),2013,34(5):613-617. 被引量:7
  • 4Bhupinder S,Sudhir D,Sandeep J,et al.Use of fuzzy synthetic evaluation for assessment of groundwater quality for drinking usage:a case study of southern Haryana,India[J].Environmental Geology,2008,54(2):249-255. 被引量:1
  • 5Quesada G M,Castillo D E.A dual response approach to the multivariate robust parameter design problem[J].Technometrics,2004,46(2): 176-187. 被引量:1
  • 6Kim K J,Lin D K J.Simultaneous optimization of mechanical properties of steel by maximizing exponential desirability functions[J].Journal of Royal Statistical Society:Series C,2000,49(3):311-325. 被引量:1
  • 7Yang T,Hung C C.Multiple-attribute decision making methods for plant layout design problem[J].Robotics and Computer Integrated Manufacturing,2007,23(1): 126-137. 被引量:1
  • 8Wu F C.Optimization of correlated multiple quality characteristics using desirability function[J].Quality Engineering,2005,17(1):119-126. 被引量:1
  • 9Wu F C.Optimisation of multiple quality characteristics based on percentage reduction of Taguchi’s quality loss[J].The International Journal of Advanced Manufacturing Technology,2002,20(10):749-753. 被引量:1
  • 10Behzadian M,Otaghsara S K,Yazdani M.A state-of-the-art survey of TOPSIS applications[J].Expert Systems with Applications,2012,39:13051-13069. 被引量:1

二级参考文献16

  • 1金文,陈长征,金志浩,闻邦椿.燃气轮发电机组多故障诊断的物元分析方法[J].中国电机工程学报,2007,27(17):57-60. 被引量:9
  • 2蔡文 杨春燕 林伟初.可拓工程方法[M].北京:科学出版社,2000.108-116. 被引量:159
  • 3De Felippe J A M,Bezerra A D,Barreto M D A,et al. Using artificial neural networks for pattern recognition of downhole dynamometer card in oil rod pump system [ C ]//World Scientific and Engineering Academy and Society. Wisconsin, 2009:230 - 235. 被引量:1
  • 4Wu W, Sun W L, Wei H X. A fault diagnosis of suck rod pumping system based on wavelet packet and RBF network [ J]. Advanced Materials Research ,2011,189/190/191/192/ 193:2665 - 2669. 被引量:1
  • 5Xu P, Xu S J, Yin H W. Application of self-organizing competitive neural network in fault diagnosis of suck rod pumping system[J ]. Journal of Petroleum Science and Engineering,2007,58 ( 1/2 ) :43 - 48. 被引量:1
  • 6Wang J P, Bao Z F. Study of pump fault diagnosis based on rough sets theory[ C ]//The 3rd International Conference on Innovative Computing Information and Control. Piscataway, 2008:288. 被引量:1
  • 7Tian J W, Gao M J, Li K, et al. Fault detection of oil pump based on classify support vector machine [ C ]//2007 IEEE International Conference on Control and Automation. Piscataway ,2007:549 - 553. 被引量:1
  • 8陈家林.有杆泵抽油井井下示功图的一种快速计算方法[J].石油学报,1988,9(3):105-113. 被引量:1
  • 9何岩峰,吴晓东,韩国庆,肖伟,李伟超,于晓玲.示功图频谱分析新方法[J].石油学报,2008,29(4):619-624. 被引量:25
  • 10王青,李江雄,柯映林,刘伟.曲面上曲线约束变形及光顺技术研究[J].浙江大学学报(工学版),2008,42(9):1573-1579. 被引量:4

共引文献15

同被引文献26

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部