期刊文献+

高光谱异常检测中背景抑制方法研究 被引量:4

Research on background depression in hyperspectral image anomaly detection
原文传递
导出
摘要 针对高光谱图像复杂背景导致异常检测效果下降的问题,提出了一种新的异常检测方法。首先使用小波分解将原始高光谱图像分解成高频信息图像和低频信息图像,使用主成分分析(PCA)方法抑制高光谱原始图像的背景信息;然后将背景抑制后图像和高频信息图像融合,得到处理后图像;最后使用Kerner-Reed-Xiaoli(KRX)算法进行异常检测,并仿真证明了本文方法在提高异常检测效果和效率方面的有效性。 In order to overcome the bad influence caused by complex background in hyperspectral image a- nomaly detection,a new anomaly detection approach is proposed. Hyperspectral data is forstly decom- posed into high frequency images and low frequency image by wavelet decomposition, and the background information in hyperspectral date is also processed by principal component analysis (PCA). Then data af- ter processing is gotten by fusing high frequency images and data after PCA. At lastly, Kerner-Reed-Xiaoli (KRX) algorithm is used to detect the data after processing. The simulation results show that the ap- proach is better than other algorithms by comparing the receiver operating characteristic (ROC) curves.
机构地区 空军航空大学
出处 《光电子.激光》 EI CAS CSCD 北大核心 2016年第2期177-181,共5页 Journal of Optoelectronics·Laser
基金 吉林省科技发展计划资助项目(20140101213JC)资助项目
关键词 高光谱异常检测 小波分解 主成分分析(PCA) KRX算法 hyperspectral image anomaly detection wavelet decomposition principal components analy-sis (PCA) Kerner-Reed-Xiaoli (KRX) algorithm
  • 相关文献

参考文献12

  • 1David W J, Stein Scott G, Beaven Lawrence E Hoff, et a]. Anomaly detection from hyperspectral Imagery[J]. IEEE Signal Processing Magazine, 2002,58-69. 被引量:1
  • 2孟强强,杨桄,孙嘉成,雷忠祥,卢珊.利用小波分解和顶点成分分析的高光谱异常检测[J].光电子.激光,2014,25(6):1152-1157. 被引量:5
  • 3Wang L, Li Z, Sun J, et al. Anomaly detection algorithm for hyperspectral images based on background endmem- ber extraction and kernel RX algorithm[A]. Computer Ap- plication and System Modeling (ICCASM), IEEE Interna- tional Conference on[C]. IEEE, 2010,13 : 288-291. 被引量:1
  • 4史振威,吴俊,杨硕,姜志国.RX及其变种在高光谱图像中的异常检测[J].红外与激光工程,2012,41(3):796-802. 被引量:20
  • 5赵春晖,李杰,梅锋.核加权RX高光谱图像异常检测算法[J].红外与毫米波学报,2010,29(5):378-382. 被引量:26
  • 6张丽丽,赵春晖,成宝芝.基于联合核协同的高光谱图像异常目标检测[J].光电子.激光,2015,26(11):2154-2161. 被引量:8
  • 7WANG Yu-lei, ZHAO Chun-hui, WANG Ying. Anomaly de- tection using subspace band section based RX algorithm [A]. Proc. of IEEE International Conference on Digital Object Identifier, 2011,3436-3439. 被引量:1
  • 8Asif Mehmood, Nasser M Nasrabadi. Kernel wavelet- Reed-XJaoli:an anomaly detectionfor forward-looking in- frared imagery[J]. Optical Society of America, 2011,50 (17) ..2744-2751. 被引量:1
  • 9Kwon H, Nasrabadi N M. Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2) :388-397. 被引量:1
  • 10Gurram P, Kwon H, Han T. Sparse kernel-based hyper- spectral anomaly detection [J]. IEEE Geosci. Remote Sens. Lett. ,2012,9(5) :943-947. 被引量:1

二级参考文献51

共引文献48

同被引文献39

  • 1汤晓艳,周光宏,徐幸莲,杨曙明,钱永忠,叶志华.肉嫩度决定因子及牛肉嫩化技术研究进展[J].中国农业科学,2007,40(12):2835-2841. 被引量:45
  • 2张雷蕾,彭彦昆,陶斐斐,赵松玮,宋育霖.肉品挥发性盐基氮的高光谱无损快速检测[J].食品安全质量检测学报,2012,3(6):575-579. 被引量:11
  • 3吴龙国,何建国,刘贵珊,贺晓光,王伟,王松磊,李丹.基于NIR高光谱成像技术的长枣虫眼无损检测[J].发光学报,2013,34(11):1527-1532. 被引量:15
  • 4谷延锋,刘颖,贾友华,张晔.基于光谱解译的高光谱图像奇异检测算法[J].红外与毫米波学报,2006,25(6):473-477. 被引量:17
  • 5Qiao J,Ngadi M O,Wang N,et al. Pork quality and mar- bling level assessment using a hyperspectral imaging sys- tem[J]. Journal of Food Engineering, 2007,83 ( ] ) : 10-16. 被引量:1
  • 6WU Jian-hu, PENG Yan-kun, LI Yong-yu. Prediction of beef quality attributes using VlS/NIR hyperspectral scat- tering imaging technique[J]. Journal of Food Engineering, 2012, (109) : 267-273. 被引量:1
  • 7TAO Fei-fei, PENG Yan-kun, LI Yong-yu, et al. Simultane- ous determination of tenderness and Escherichia coil con- tamination of pork using hyperspectral scattering tech- nique[J]. Meat Science,2012, (90) =851-857. 被引量:1
  • 8Kamruzzaman Mohammed, EIMasry Gamal, Sun Da-wen. Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral ima- ging and multivariate regression[J]. Innovative Food Sci- ence and Emerging Technologies, 2012,7 : 3-7. 被引量:1
  • 9Barbin Douglas F, EIMasry Gamal, Sun Da-wen. Predic- ting quality and sensory attributes of pork using near-in- frared hyperspectral imaging[J]. Analytica Chimica Ac- ta,2012, (719) :30-42. 被引量:1
  • 10Kamruzzaman Mohammed, EIMasry Gamal, Sun Da-wen. Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate a- nalysis[J]. Analytica Chimica Acta,2012, (714) : 57-67. 被引量:1

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部