期刊文献+

Excited-State Proton Transfer and Decay in Hydrogen-Bonded Oxazole System: MS-CASPT2//CASSCF Study

噁唑体系激发态质子转移和失活的理论研究
下载PDF
导出
摘要 Herein we have employed high-level multi-reference CASSCF and MS-CASPT2 electronic structure methods to systematically study the photochemical mechanism of intramolecularly hydrogen-bonded 2-(2'-hydroxyphenyl)-4-methyloxazole. At the CASSCF level, we have optimized minima, conical intersections, minimum-energy reaction paths relevant to the excited-state intramolecular proton transfer (ESIPT), rotation, photoisomerization, and the excited-state deactivation pathways. The energies of all structures and paths are refined by the MS-CASPT2 method. On the basis of the present results, we found that the ESIPT process in a conformer with the OH... N hydrogen bond is essentially barrierless process; whereas, the ESIPT process is inhibited in the other conformer with the OH... O hydrogen bond. The central single-bond rotation of the S1 enol species is energetically unfavorable due to a large barrier. In addition, the excited-state deactivation of the S1 keto species, as a result of the ultrafast ESIPT, is very efficient because of the existence of two easily-approached keto S1/S0 conical intersections. In stark contrast to the S1 keto species, the decay of the S1 enol species is almostly blocked. The present theoretical study contributes valuable knowledge to the understanding of photochemistry of similar intramolecularly hydrogen-bonded molecular and biological systems.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第1期38-46,I0001,共10页 化学物理学报(英文)
关键词 Excited state proton transfer PHOTOISOMERIZATION Conical intersection Ab initio PHOTOCHEMISTRY 激发态质子转移 光异构化 圆锥交叉 从头算 光化学
分类号 O [理学]
  • 相关文献

参考文献74

  • 1P. F. Barbara, P. K. Walsh, and L. E. Brus, J. Phys. Chem. 93, 29 (1989). 被引量:1
  • 2W. E. Brewer, M. L. Martnez, and P. T. Chou, J. Phys. Chem. 94, 1915 (1990). 被引量:1
  • 3T. Arthen-Engeland, T. Bultmann, N. P. Ernsting, M. A. Rodriguez, and W. Thiel, Chem. Phys. 163, 43 (1992). 被引量:1
  • 4A. Sytnik and M. Kasha, Proc. Natl. Acad. Sei. 91, 8627 (1994). 被引量:1
  • 5T. Mutai, H. Tomoda, T. Ohkawa, Y. Yabe, and K. Araki, Angew. Chem. Int. Ed. 47, 9522 (2008). 被引量:1
  • 6F. A. S. Chipem and G. Krishnamoorthy, J. Phys. Chem. A 113, 12063 (2009). 被引量:1
  • 7L. Antonov, V. Deneva, S. Simeonov, V. Kurteva, D. Nedelteheva, and J. Wirz, Angew. Chem. Int. Ed. 48, 7875 (2009). 被引量:1
  • 8S. Park, J. E. Kwon, and S. Y. Park, Phys. Chem. Chem. Phys. 14, 8878 (2012). 被引量:1
  • 9M. J. Paterson, M. A. Robb, L. Blancafort, and A. D. DeBellis, J. Phys. Chem. A 109, 7527 (2005). 被引量:1
  • 10S. Park, O. H. Kwon, S. Kim, S. Park, M. G. Choi, M. Cha, S. Y. Park, and D. J. Jang, J. Am. Chem. Soe. 127, 10070 (2005). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部