期刊文献+

一种SQUID传感器基线漂移和工频干扰联合抑制新方法 被引量:4

A New Joint Suppression Method for Baseline Wandering and Power Line Interference of SQUID Sensor
下载PDF
导出
摘要 基于超导量子干涉器件的低频微弱磁场测量系统,在无磁屏蔽环境下工作时容易受到大地磁场和输电线路干扰,测量数据中混叠有严重的基线漂移和工频谐波干扰。为了提高微弱磁场信号检测性能,本文提出了一种基线漂移和工频干扰联合抑制新方法。该方法首先利用噪声辅助的多维经验模式分解部分重构信号,消除基线漂移带来的非平稳性影响。然后根据工频干扰的短时平稳特性,采用最小二乘法对工频干扰进行抑制。数值仿真和不同环境下实测数据处理结果表明,与自适应滤波方法相比,本文方法对于基线漂移和工频干扰具有更好的处理效果,满足系统在野外无磁屏蔽条件下的应用要求。 In the absence of magnetic shielding room,the data measured with the low frequency magnetic measurement system using superconducting quantum interference device,could be easily interrupted by serious baseline wandering and harmonic power line interference,which are brought by the geomagnetic activity and the power line. In order to enhance the detection performance for weak magnetic signal,a new joint suppression method for baseline wandering and power line interference is proposed. In this proposed method,the signal is partially reconstructed with intrinsic mode functions decomposed by the noise assisted multivariate empirical mode decomposition. Consequently,the non-stationary effect brought by the baseline wandering could be eliminated. And then according to the short-time stationarity of the power line interference,the least square method is adopted for interference suppression. Numerical simulation and wild measured data processing results show that,compared with adaptive filter method,the proposed method achieves better performance for baseline wandering and power line interference,which indicates it is applicable to wild measurement without magnetic shielding room.
出处 《信号处理》 CSCD 北大核心 2016年第2期127-134,共8页 Journal of Signal Processing
基金 十二五预研项目(*****0803)
关键词 超导量子干涉器件 干扰抑制 多维经验模式分解 最小二乘 superconducting quantum interference device interference suppression multivariate empirical mode decomposition least square
  • 相关文献

参考文献4

二级参考文献44

  • 1李貅,宋建平,马宇,武军杰.基于小波分析的TEM信号提取[J].煤田地质与勘探,2005,33(2):72-75. 被引量:20
  • 2Drung D 1995 IEEE Trans. Appl. Supercond. 5 2112 被引量:1
  • 3Vrba J 1997 Proc. 19th Annual Int. Conf. IEEE-EMBS (Chicago, IL. USA) p 1240 被引量:1
  • 4Wakai R T, Wang M and Martin C B 1994 Am. J. Obstet. Gynecol. 170 770 被引量:1
  • 5Li Z, Chen G H, Zhang L H, Yang Q S and Feng J 2005 Chin. Phys. 14 1095 被引量:1
  • 6Meyer Y 1993 Wavelet: Algorithms and Applications (Philadelphia: SIAM) 被引量:1
  • 7Chui Charles K 1992 Wavelet Analysis and Its Application (New York: Academic) 被引量:1
  • 8Li Z, Chen G H, zhang L H, Yang Q S and Feng J 2006 Chin. Phys. 15 0310 被引量:1
  • 9Zhu X M, Tian Y, Zhao S P, Chen G H and Yang Q S 2005 Supercond. Sci. Technol. 18 1054 被引量:1
  • 10Zhu X M, Ren Y F, Yu H W, Zhao S P, Chen G H, Zhang L H and Yang Q S 2006 Chin. Phys. 15 0100 被引量:1

共引文献65

同被引文献105

  • 1李天云,赵妍,李楠.基于EMD的Hilbert变换应用于暂态信号分析[J].电力系统自动化,2005,29(4):49-52. 被引量:77
  • 2袁林.生物电和生物磁的原理及其临床应用[J].中国医学装备,2005,2(10):35-37. 被引量:11
  • 3Kiymik M K, Guler I, Dizibtiyak A, et al. Comparison of STFT and wavelet transform methods in determining epi- leptic seizure activity in EEG signals for real-time appli- cation. Computer in Biology & Medicine, 2005, 35 (7) : 603-616. 被引量:1
  • 4Morlet J, Arens G, Fourgeau E, et al. Wave propagation and sampling theory-Part I: Complex signal and scattering in multilayered media. Geophysics, 1982, 47 (2) : 203- 221. 被引量:1
  • 5Andrieux J C, Feix M R, Mourgues G, et al. Optimum smoothing of the Wigner Ville distribution. IEEE Transactions on Acoustics, Speech and Signal Processing, 1987, 35(6) : 764-769. 被引量:1
  • 6Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlin- ear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454 ( 1971 ) : 903-995. 被引量:1
  • 7Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and its algorithms. In: Proceeding of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado, Italy, 2003. 8-11. 被引量:1
  • 8Wu Z, Huang N E. Ensemble empirical mode decomposi- tion: a noise-assisted data analysis method. Advances in adaptive data analysis, 2009, 1 ( 1 ) : 1-41. 被引量:1
  • 9Yeh J R, Shieh J S, Huang N E. Complementary ensem- ble empirical mode decomposition: A novel noise en- hanced data analysis method. Advances in Adaptive Data Analysis, 2010, 2(2) : 135-156. 被引量:1
  • 10Torres M E, Colominas M A, Schlotthauer G, et al. A complete ensemble empirical mode decomposition with adaptive noise. In: Proceeding of the IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, 2011. 4144-4147. 被引量:1

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部