期刊文献+

A novel wet-spinning method of manufacturing continuous bio-inspired composites based on graphene oxide and sodium alginate 被引量:4

A novel wet-spinning method of manufacturing continuous bio-inspired composites based on graphene oxide and sodium alginate
原文传递
导出
摘要 Nacre is a lightweight, strong, stiff, and tough material, which makes it a mimicking object for material design. Many attempts to mimic nacre by various methods resulted in the synthesis of artificial nacre with excellent properties. However, the fabrication procedure was very laborious and time-consuming due to the sequential steps, and only limited-sized materials could be obtained. Hence, a novel design enabling scalable production of high-performance artificial nacre with uniform layered structures is urgently needed. We developed a novel wet-spinning assembly technique to rapidly manufacture continuous nacre- mimic graphene oxide (GO, brick)-sodium alginate (SA, mortar) films and fibers with excellent mechanical properties. At high concentrations, the GO-SA mixtures spontaneously produced liquid crystals (LCs) due to the template effect of GO, and continuous, 6 m long nacre-like GO-SA films were wet-spun from the obtained GO-SA liquid crystalline (LC) dope with a speed of up to 1.5 m/min. The assembled macroscopic GO-SA composites inherited the alignment of the GO sheets from the LC phase, and their mechanical properties were investigated by a joint experimental-computational study. The tensile tests revealed that the maximum strength (0) and Young's modulus (E) of the obtained films reached 239.6 MPa and 22.4 GPa, while the maximum values of o and E for the fibers were 784.9 MPa and 58 GPa, respectively. The described wet-spinning assembly method is applicable for a large-scale and fast production of high-performance continuous artificial nacre. Nacre is a lightweight, strong, stiff, and tough material, which makes it a mimicking object for material design. Many attempts to mimic nacre by various methods resulted in the synthesis of artificial nacre with excellent properties. However, the fabrication procedure was very laborious and time-consuming due to the sequential steps, and only limited-sized materials could be obtained. Hence, a novel design enabling scalable production of high-performance artificial nacre with uniform layered structures is urgently needed. We developed a novel wet-spinning assembly technique to rapidly manufacture continuous nacre- mimic graphene oxide (GO, brick)-sodium alginate (SA, mortar) films and fibers with excellent mechanical properties. At high concentrations, the GO-SA mixtures spontaneously produced liquid crystals (LCs) due to the template effect of GO, and continuous, 6 m long nacre-like GO-SA films were wet-spun from the obtained GO-SA liquid crystalline (LC) dope with a speed of up to 1.5 m/min. The assembled macroscopic GO-SA composites inherited the alignment of the GO sheets from the LC phase, and their mechanical properties were investigated by a joint experimental-computational study. The tensile tests revealed that the maximum strength (0) and Young's modulus (E) of the obtained films reached 239.6 MPa and 22.4 GPa, while the maximum values of o and E for the fibers were 784.9 MPa and 58 GPa, respectively. The described wet-spinning assembly method is applicable for a large-scale and fast production of high-performance continuous artificial nacre.
出处 《Nano Research》 SCIE EI CAS CSCD 2016年第3期735-744,共10页 纳米研究(英文版)
基金 This research was financially supported by The National Natural Science Foundation of China (Nos. 21325417, 51173162 and 51533008) and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (No. LK1403).
关键词 CONTINUOUS bio-inspired films sodium alginate graphene oxide wet-spinning method continuous,bio-inspired films,sodium alginate,graphene oxide,wet-spinning method
  • 相关文献

参考文献1

二级参考文献2

共引文献4

同被引文献17

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部